首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3196篇
  免费   129篇
  国内免费   18篇
化学   1973篇
晶体学   12篇
力学   87篇
数学   740篇
物理学   531篇
  2023年   32篇
  2022年   25篇
  2021年   64篇
  2020年   59篇
  2019年   81篇
  2018年   60篇
  2017年   66篇
  2016年   134篇
  2015年   103篇
  2014年   117篇
  2013年   191篇
  2012年   242篇
  2011年   273篇
  2010年   153篇
  2009年   170篇
  2008年   225篇
  2007年   216篇
  2006年   193篇
  2005年   157篇
  2004年   150篇
  2003年   95篇
  2002年   88篇
  2001年   31篇
  2000年   31篇
  1999年   23篇
  1998年   23篇
  1997年   18篇
  1996年   25篇
  1995年   14篇
  1994年   19篇
  1993年   18篇
  1992年   25篇
  1991年   14篇
  1990年   22篇
  1989年   10篇
  1988年   12篇
  1987年   9篇
  1986年   12篇
  1985年   18篇
  1984年   22篇
  1983年   10篇
  1982年   7篇
  1981年   14篇
  1980年   7篇
  1979年   9篇
  1978年   6篇
  1974年   7篇
  1971年   6篇
  1970年   4篇
  1963年   5篇
排序方式: 共有3343条查询结果,搜索用时 31 毫秒
1.
Manganese, the third most abundant transition-metal element after iron and titanium, has recently been demonstrated to be an effective homogeneous catalyst in numerous reactions. Herein, the preparation of silica-supported MnII sites is reported using Surface Organometallic Chemistry (SOMC), combined with tailored thermolytic molecular precursors approach based on Mn2[OSi(OtBu)3]4 and Mn{N(SiMe3)2}2⋅THF. These supported MnII sites, free of organic ligands, efficiently catalyze numerous reactions: hydroboration and hydrosilylation of ketones and aldehydes as well as the transesterification of industrially relevant substrates.  相似文献   
2.
Copper(I) complexes (CICs) are of great interest due to their applications as redox mediators and molecular switches. CICs present drastic geometrical change in their excited states, which interferes with their luminescence properties. The photophysical process has been extensively studied by several time-resolved methods to gain an understanding of the dynamics and mechanism of the torsion, which has been explained in terms of a Jahn–Teller effect. Here, we propose an alternative explanation for the photoinduced structural change of CICs, based on electron density redistribution. After photoexcitation of a CIC (S0→S1), a metal-to-ligand charge transfer stabilizes the ligand and destabilizes the metal. A subsequent electron transfer, through an intersystem crossing process, followed by an internal conversion (S1→T2→T1), intensifies the energetic differences between the metal and ligand within the complex. The energy profile of each state is the result of the balance between metal and ligand energy changes. The loss of electrons originates an increase in the attractive potential energy within the copper basin, which is not compensated by the associated reduction of the repulsive atomic potential. To counterbalance the atomic destabilization, the valence shell of the copper center is polarized (defined by ∇2ρ(r) and ∇2Vne(r)) during the deactivation path. This polarization increases the magnitude of the intra-atomic nuclear–electron interactions within the copper atom and provokes the flattening of the structure to obtain the geometry with the maximum interaction between the charge depletions of the metal and the charge concentrations of the ligand.  相似文献   
3.
A new set of Cr(III) complexes, {L}CrCl3(THF), based on thiophene–imine ( 2a , L = PhOC6H4(N═CH)‐2‐SC4H3; 2b , L = PhOC2H4(N═CH)‐2‐SC4H3; 2c , L = Ph(NH)C2H4(N═CH)‐2‐SC4H3; 2d , L = PhOC6H4(N═CH)‐2‐SC4H2‐5‐Ph; 2e , L = Ph(NH)C2H4(N═CH)‐2‐SC4H2‐5‐Ph) have been prepared and characterized using elemental analysis and infrared spectroscopy. Upon activation with methylaluminoxane, all the chromium complexes generated active systems affording a nonselective distribution of α‐olefins with turnover frequencies in the range 9500–93 500 (mol ethylene) (mol Cr)?1 h?1, and producing mostly oligomers (95.0–99.3 wt% of total products). Small amounts of polymer were produced in these oligomerization reactions (0.8–8.2 wt%). The catalytic activities were quite sensitive to the ligand environment. Moreover, the effects of oligomerization parameters (temperature, [Al]/[Cr] molar ratio, time) on the activity and on the product distribution were examined.  相似文献   
4.
The human macrophage galactose-type lectin (MGL), expressed on macrophages and dendritic cells (DCs), modulates distinct immune cell responses by recognizing N-acetylgalactosamine (GalNAc) containing structures present on pathogens, self-glycoproteins, and tumor cells. Herein, NMR spectroscopy and molecular dynamics (MD) simulations were used to investigate the structural preferences of MGL against different GalNAc-containing structures derived from the blood group A antigen, the Forssman antigen, and the GM2 glycolipid. NMR spectroscopic analysis of the MGL carbohydrate recognition domain (MGL-CRD, C181-H316) in the absence and presence of methyl α-GalNAc (α-MeGalNAc), a simple monosaccharide, shows that the MGL-CRD is highly dynamic and its structure is strongly altered upon ligand binding. This plasticity of the MGL-CRD structure explains the ability of MGL to accommodate different GalNAc-containing molecules. However, key differences are observed in the recognition process depending on whether the GalNAc is part of the blood group A antigen, the Forssman antigen, or GM2-derived structures. These results are in accordance with molecular dynamics simulations that suggest the existence of a distinct MGL binding mechanism depending on the context of GalNAc moiety presentation. These results afford new perspectives for the rational design of GalNAc modifications that fine tune MGL immune responses in distinct biological contexts, especially in malignancy.  相似文献   
5.
A generic strategy based on the use of CdSe/ZnS Quantum Dots (QDs) as elemental labels for protein quantification, using immunoassays with elemental mass spectrometry (ICP-MS), detection is presented. In this strategy, streptavidin modified QDs (QDs-SA) are bioconjugated to a biotinylated secondary antibody (b-Ab2). After a multi-technique characterization of the synthesized generic platform (QDs-SA-b-Ab2) it was applied to the sequential quantification of five proteins (transferrin, complement C3, apolipoprotein A1, transthyretin and apolipoprotein A4) at different concentration levels in human serum samples. It is shown how this generic strategy does only require the appropriate unlabeled primary antibody for each protein to be detected. Therefore, it introduces a way out to the need for the cumbersome and specific bioconjugation of the QDs to the corresponding specific recognition antibody for every target analyte (protein). Results obtained were validated with those obtained using UV–vis spectrophotometry and commercial ELISA Kits.  相似文献   
6.
7.
The use of a strongly donating “(bis‐dialkylphosphine)Ni” fragment promotes the catalytic coupling of a large range of ArCl and ArZnCl derivatives under mild conditions. Stoichiometric mechanistic investigations and DFT calculations prove that a Ni0/NiII cycle is operative in this system.  相似文献   
8.
Anionic carbosilane dendrons decorated with sulfonate functions and one thiol moiety at the focal point have been used to synthesize water‐soluble gold nanoparticles (AuNPs) through the direct reaction of dendrons, gold precursor, and reducing agent in water, and also through a place‐exchange reaction. These nanoparticles have been characterized by NMR spectroscopy, TEM, thermogravimetric analysis, X‐ray photoelectron spectroscopy (XPS), UV/Vis spectroscopy, elemental analysis, and zeta‐potential measurements. The interacting ability of the anionic sulfonate functions was investigated by EPR spectroscopy with copper(II) as a probe. Different structures and conformations of the AuNPs modulate the availability of sulfonate and thiol groups for complexation by copper(II). Toxicity assays of AuNPs showed that those produced through direct reaction were less toxic than those obtained by ligand exchange. Inhibition of HIV‐1 infection was higher in the case of dendronized AuNPs than in dendrons.  相似文献   
9.
The ability to control the interplay of materials with low‐energy photons is important as visible light offers several appealing features compared to ultraviolet radiation (less damaging, more selective, predominant in the solar spectrum, possibility to increase the penetration depth). Two different metal–organic frameworks (MOFs) were synthesized from the same linker bearing all‐visible ortho‐fluoroazobenzene photoswitches as pendant groups. The MOFs exhibit different architectures that strongly influence the ability of the azobenzenes to isomerize inside the voids. The framework built with Al‐based nodes has congested 1D channels that preclude efficient isomerization. As a result, local light–heat conversion can be used to alter the CO2 adsorption capacity of the material on exposure to green light. The second framework, built with Zr nodes, provides enough room for the photoswitches to isomerize, which leads to a unique bistable photochromic MOF that readily responds to blue and green light. The superiority of green over UV irradiation was additionally demonstrated by reflectance spectroscopy and analysis of digested samples. This material offers promising perspectives for liquid‐phase applications such as light‐controlled catalysis and adsorptive separation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号