首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1904篇
  免费   40篇
  国内免费   6篇
化学   1306篇
晶体学   30篇
力学   43篇
数学   332篇
物理学   239篇
  2021年   13篇
  2020年   24篇
  2019年   21篇
  2018年   13篇
  2016年   23篇
  2015年   27篇
  2014年   35篇
  2013年   70篇
  2012年   62篇
  2011年   95篇
  2010年   40篇
  2009年   41篇
  2008年   83篇
  2007年   95篇
  2006年   82篇
  2005年   67篇
  2004年   69篇
  2003年   73篇
  2002年   50篇
  2001年   21篇
  2000年   15篇
  1998年   12篇
  1997年   25篇
  1996年   33篇
  1995年   27篇
  1994年   24篇
  1993年   24篇
  1992年   23篇
  1991年   16篇
  1990年   20篇
  1989年   25篇
  1988年   19篇
  1987年   28篇
  1986年   20篇
  1985年   42篇
  1984年   38篇
  1983年   36篇
  1982年   37篇
  1981年   31篇
  1980年   13篇
  1979年   27篇
  1978年   38篇
  1977年   32篇
  1976年   33篇
  1975年   35篇
  1974年   24篇
  1973年   21篇
  1972年   13篇
  1970年   12篇
  1966年   16篇
排序方式: 共有1950条查询结果,搜索用时 19 毫秒
1.
BIT Numerical Mathematics - In this article we address the problem of minimizing a strictly convex quadratic function using a novel iterative method. The new algorithm is based on the well-known...  相似文献   
2.
3.
The direct conversion of syngas to ethanol, typically using promoted Rh catalysts, is a cornerstone reaction in CO2 utilization and hydrogen storage technologies. A rational catalyst development requires a detailed structural understanding of the activated catalyst and the role of promoters in driving chemoselectivity. Herein, we report a comprehensive atomic‐scale study of metal–promoter interactions in silica‐supported Rh, Rh–Mn, and Rh–Mn–Fe catalysts by aberration‐corrected (AC) TEM. While the catalytic reaction leads to the formation of a Rh carbide phase in the Rh–Mn/SiO2 catalyst, the addition of Fe results in the formation of bimetallic Rh–Fe alloys, which further improves the selectivity and prevents the carbide formation. In all promoted catalysts, Mn is present as an oxide decorating the metal particles. Based on the atomic insight obtained, structural and electronic modifications induced by promoters are revealed and a basis for refined theoretical models is provided.  相似文献   
4.
5.
As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of C−H hydrogen bonds have been well-studied, much less is known about the R3N+−C−H⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of 1H NMR experiments detailing R3N+−C−H⋅⋅⋅X (X=O, N) hydrogen bonds are described.  相似文献   
6.
π-Conjugated nanoribbons attract interest because of their unusual electronic structures and charge-transport behavior. Here, we report the synthesis of a series of fully edge-fused porphyrin-anthracene oligomeric ribbons (dimer and trimer), together with a computational study of the corresponding infinite polymer. The porphyrin dimer and trimer were synthesized in high yield, via oxidative cyclodehydrogenation of singly linked precursors, using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and trifluoromethanesulfonic acid (TfOH). The crystal structure of the dimer shows that the central π-system is flat, with a slight S-shaped wave distortion at each porphyrin terminal. The extended π-conjugation causes a dramatic red-shift in the absorption spectra: the absorption maxima of the fused dimer and trimer appear at 1188 nm and 1642 nm, respectively (for the nickel complexes dissolved in toluene). The coordinated metal in the dimer was changed from Ni to Mg, using p-tolylmagnesium bromide, providing access to free-base and Zn complexes. These results open a versatile avenue to longer π-conjugated nanoribbons with integrated metalloporphyrin units.  相似文献   
7.
Small alterations to the structure of a star‐shaped template totally change its mode of operation. The hexapyridyl template directs the conversion of a porphyrin dimer to the cyclic hexamer, but deleting one pyridine site changes the product to the cyclic decamer, while deleting two binding sites changes the product to the cyclic octamer. This surprising switch in selectivity is explained by the formation of 2:1 caterpillar track complexes, in which two template wheels bind inside the nanoring. Caterpillar track complexes can also be prepared by binding the hexapyridyl template inside the 8‐ and 10‐porphyrin nanorings. NMR exchange spectroscopy (EXSY) experiments show that these complexes exhibit correlated motion, in which the conrotatory rotation of the two template wheels is coupled to rotation of the nanoring track. In the case of the 10‐porphyrin system, the correlated motion can be locked by binding palladium(II) dichloride between the two templates.  相似文献   
8.
Rings of chlorophyll molecules harvest sunlight remarkably efficiently during photosynthesis in purple bacteria. The key to their efficiency lies in their highly delocalized excited states that allow for ultrafast energy migration. Here we show that a family of synthetic nanorings mimic the ultrafast energy transfer and delocalization observed in nature. π-Conjugated nanorings with diameters of up to 10 nm, consisting of up to 24 porphyrin units, are found to exhibit excitation delocalization within the first 200 fs of light absorption. Transitions from the first singlet excited state of the circular nanorings are dipole-forbidden as a result of symmetry constraints, but these selection rules can be lifted through static and dynamic distortions of the rings. The increase in the radiative emission rate in the larger nanorings correlates with an increase in static disorder expected from Monte Carlo simulations. For highly symmetric rings, the radiative rate is found to increase with increasing temperature. Although this type of thermally activated superradiance has been theoretically predicted in circular chromophore arrays, it has not previously been observed in any natural or synthetic systems. As expected, the activation energy for emission increases when a nanoring is fixed in a circular conformation by coordination to a radial template. These nanorings offer extended chromophores with high excitation delocalization that is remarkably stable against thermally induced disorder. Such findings open new opportunities for exploring coherence effects in nanometer molecular rings and for implementing these biomimetic light-harvesters in man-made devices.  相似文献   
9.
Sodium-ion batteries (NIBs) utilize cheaper materials than lithium-ion batteries (LIBs) and can thus be used in larger scale applications. The preferred anode material is hard carbon, because sodium cannot be inserted into graphite. We apply experimental entropy profiling (EP), where the cell temperature is changed under open circuit conditions. EP has been used to characterize LIBs; here, we demonstrate the first application of EP to any NIB material. The voltage versus sodiation fraction curves (voltage profiles) of hard carbon lack clear features, consisting only of a slope and a plateau, making it difficult to clarify the structural features of hard carbon that could optimize cell performance. We find additional features through EP that are masked in the voltage profiles. We fit lattice gas models of hard carbon sodiation to experimental EP and system enthalpy, obtaining: 1. a theoretical maximum capacity, 2. interlayer versus pore filled sodium with state of charge.  相似文献   
10.
We synthesized new imidazolium-based tunable aryl alkyl ionic liquids (TAAILs) with the weakly coordinating tetrakis(pentafluoroethyl)gallate anion, [Ga(C2F5)4]. Phenyl and phenyl derivatives (2-Me, 4-OMe, 2,4-F) were combined with varying alkyl chain lengths at the imidazolium core leading to TAAILs, which were investigated with regard to their viscosity, conductivity, and electrochemical window and compared to EMIM and BMIM standard cations. Remarkable low viscosities of 29 cP at 25 °C for [BMIM][Ga(C2F5)4] were achieved. However, the EMIM and BMIM gallates show electrochemical instability, releasing pentafluoroethane at a voltage of 1.5 V. The 2-Me-substituted gallate-TAAILs slowly decompose over several weeks, whereas all other gallate-TAAILs showed no decomposition at all. With electrochemical windows of up to 5.15 V and low viscosities in a range of 66–162 cP, the gallate-TAAILs are promising candidates as electrolytes in electrochemical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号