首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   4篇
化学   35篇
力学   2篇
数学   6篇
物理学   17篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2007年   2篇
  2003年   2篇
  2000年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1965年   1篇
  1936年   1篇
  1894年   1篇
  1888年   2篇
  1887年   1篇
  1884年   1篇
排序方式: 共有60条查询结果,搜索用时 125 毫秒
1.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   
2.
We report a Ni‐catalyzed regioselective α‐carbonylalkylarylation of vinylarenes with α‐halocarbonyl compounds and arylzinc reagents. The reaction works with primary, secondary, and tertiary α‐halocarbonyl molecules, and electronically varied arylzinc reagents. The reaction generates γ,γ‐diarylcarbonyl derivatives with α‐secondary, tertiary, and quaternary carbon centers. The products can be readily converted to aryltetralones, including a precursor to Zoloft, an antidepressant drug.  相似文献   
3.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   
4.
5.
6.
7.
A multiobjective combinatorial optimization (MOCO) formulation for the following location-routing problem in healthcare management is given: For a mobile healthcare facility, a closed tour with stops selected from a given set of population nodes has to be found. Tours are evaluated according to three criteria: (i) An economic efficiency criterion related to the tour length, (ii) the criterion of average distances to the nearest tour stops corresponding to p-median location problem formulations, and (iii) a coverage criterion measuring the percentage of the population unable to reach a tour stop within a predefined maximum distance. Three algorithms to compute approximations to the set of Pareto-efficient solutions of the described MOCO problem are developed. The first uses the P-ACO technique, and the second and the third use the VEGA and the MOGA variant of multiobjective genetic algorithms, respectively. Computational experiments for the Thiès region in Senegal were carried out to evaluate the three approaches on real-world problem instances.  相似文献   
8.
The γ-ray angular correlation of the 9/2+, 37 μs state in81Br and of the 181 keV, 120 μs state in78Br was disturbed by nuclear magnetic resonance. Theg-factors were determined to be ¦g¦=1.297±0.015 for the 37 μs level in81Br and ¦g¦=1.025±0.003 for the 120 μs state in78Br.  相似文献   
9.
The isomeric 731 keV, 11/2? state in113Sn was populated by the reaction113In(p, n). The halflife of the state was measured to be T1/2=89(3) ns and the magnetic moment was determined by means of the pulsed beam PAD method as μ=?1.293(22) n.m.  相似文献   
10.

Background  

Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF) activation of neurotrophin receptor tyrosine kinase B (TrkB) suppresses the Shaker voltage-gated potassium channel (Kv1.3) via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号