首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   947篇
  免费   86篇
  国内免费   5篇
化学   698篇
晶体学   1篇
力学   13篇
数学   189篇
物理学   137篇
  2023年   22篇
  2022年   12篇
  2021年   35篇
  2020年   60篇
  2019年   64篇
  2018年   20篇
  2017年   22篇
  2016年   56篇
  2015年   58篇
  2014年   44篇
  2013年   57篇
  2012年   71篇
  2011年   81篇
  2010年   53篇
  2009年   65篇
  2008年   62篇
  2007年   54篇
  2006年   42篇
  2005年   37篇
  2004年   26篇
  2003年   20篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   7篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1980年   3篇
  1974年   1篇
排序方式: 共有1038条查询结果,搜索用时 31 毫秒
1.
A new protocol based on lipase-catalyzed tandem reaction toward α,β-enones/enoesters is presented. For the synthesis of the desired products the tandem process based on enzyme-catalyzed hydrolysis and Knoevenagel reaction starting from enol acetates and aldehyde is developed. The relevant impact of the reaction conditions including organic solvent, enzyme type, and temperature on the course of the reaction was revealed. It was shown that controllable release of the active methylene compound from the corresponding enol carboxylate ensured by enzymatic reaction diminishes significantly the formation of the unwanted co-products. Furthermore, this protocol was extended by including a second tandem chemoenzymatic transformation engaging various aldehyde precursors. After a careful optimization of the reaction conditions, the target products were obtained with yields up to 86 % and with excellent E/Z-selectivity.  相似文献   
2.
A series of γ-indolylketones with fluorine, cyano or alkoxy substituents at the benzene moiety was prepared and subjected to samarium diiodide-promoted cyclization reactions. The desired dearomatizing ketyl cascade reaction forming two new rings proceeded in all cases with high diastereoselectivity, but with differing product distribution. In most cases, the desired annulated tetracyclic compounds were obtained in moderate to good yields, but as second product tetracyclic spirolactones were isolated in up to 29 % yield. The reaction rate was influenced by the substituents at the benzene moiety of the substrate as expected, with electron-accepting groups accelerating and electron-donating groups decelerating the cyclization process. In case of a difluoro-substituted γ-indolylketone a partial defluorination was observed. The intermediate samarium enolate of the tetracyclic products could be trapped by adding reactive alkylating agents as electrophiles delivering products with quarternary carbons. In the case of a dimethoxy-substituted tetracyclic cyclization product a subsequent reductive amination stereoselectively provided a pentacyclic compound that was subsequently N-protected and subjected to a regioselective elimination. The obtained functionalized pentacyclic product should be convertible into the alkaloid brucine by four well-established steps. Overall, the presented report shows that functionalized tetracyclic compounds with different substituents are rapidly available with the samarium diiodide cascade cyclization as crucial step. Hence, analogues of the landmark alkaloid strychnine, for example, with specific fluorine substitutions, should be easily accessible.  相似文献   
3.
4.
5.
A feasible two‐step synthesis and characterization of a full series of hexaarylbenzene (HAB) substituted porphyrins and tetrabenzoporphyrins is presented. Key steps represent the microwave‐assisted porphyrin condensation and the statistical Diels–Alder reaction to the desired HAB‐porphyrins. Regarding their applications, they proved to be easily accessible and effective high molecular mass calibrants for (MA)LDI mass spectrometry. The free‐base and zinc(II) porphyrin systems, as well as the respective tetrabenzoporphyrins, demonstrate in solid state experiments strong red‐ and near‐infrared‐light emission and are potentially interesting for the application in “truly organic” light‐emitting devices. Lastly, they represent facile precursors to large polycyclic aromatic hydrocarbon (PAH) substituted porphyrins. We prepared the first tetra‐hexa‐peri‐hexabenzocoronene substituted porphyrin, which represents the largest prepared PAH‐porphyrin conjugate to date.  相似文献   
6.
Reactivity studies of the GeII→B complex L(Cl)Ge⋅BH3 ( 1 ; L=2-Et2NCH2-4,6-tBu2-C6H2) were performed to determine the effect on the GeII→B donation. N-coordinated compounds L(OtBu)Ge⋅BH3 ( 2 ) and [LGe⋅BH3]2 ( 3 ) were prepared. The possible tuning of the GeII→B interaction was proved experimentally, yielding compounds 1-PPh2-8-(LGe)-C10H6 ( 4 ) and L(Cl)Ge⋅GaCl3 ( 5 ) without a GeII→B interaction. In 5 , an unprecedented GeII→Ga coordination was revealed. The experimental results were complemented by a theoretical study focusing on the bonding in 1 − 5 . The different strength of the GeII→E (E=B, Ga) donation was evaluated by using energy decomposition analysis. The basicity of different L(X)Ge groups through proton affinity is also assessed.  相似文献   
7.
Hydrogen-bonded organic semiconductors are extraordinarily stable organic solids forming stable, large crystallites with the ability to preserve favorable electrical properties upon bioconjugation. Lately, tremendous efforts have been made to use these bioconjugated semiconductors as platforms for stable multifunctional bioelectronics devices, yet the detailed characterization of bio-active binding sites (orientation, density, etc.) at the nanoscale has not been achieved yet. The presented work investigates the bioconjugation of epindolidione and quinacridone, two representative semiconductors, with respect to their exposed amine-functionalities. Relying on the biotin-avidin lock-and-key system and applying the atomic force microscopy (AFM) derivative topography and recognition (TREC) imaging, we used activated biotin to flag crystal-faces with exposed amine functional groups. Contrary to previous studies, biotin bonds were found to be stable towards removal by autolysis. The resolution strength and clear recognition capability makes TREC-AFM a valuable tool in the investigation of bio-conjugated, hydrogen-bonded semiconductors.  相似文献   
8.
Herein, we present a new class of singlet fission (SF) materials based on diradicaloids of carbene scaffolds, namely cyclic (alkyl)(amino)carbenes (CAACs). Our modular approach allows the tuning of two key SF criteria: the steric factor and the diradical character. In turn, we modified the energy landscapes of excited states in a systematic manner to accommodate the needs for SF. We report the first example of intermolecular SF in solution by dimer self-assembly at cryogenic temperatures.  相似文献   
9.
We report the synthesis of monomers for atom-transfer radical polymerization (ATRP) and a reversible addition-fragmentation chain transfer (RAFT) agent bearing trifluoroborate iminiums (TIMs), which are quantitatively converted into potassium acyltrifluoroborates (KATs) after polymerization. The resulting KAT-containing polymers are suitable for rapid amide-forming ligations for both post-polymerization modification and polymer conjugation. The polymer conjugation occurs rapidly, even under dilute (micromolar) aqueous conditions at ambient temperatures, thereby enabling the synthesis of a variety of linear and star-shaped block copolymers. In addition, we applied post-polymerization modification to the covalent linking of a photocaged cyclic antibiotic (gramicidin S) to the side chains of the KAT-containing copolymer. Cellular assays revealed that the polymer–antibiotic conjugate is biocompatible and provides efficient light-controlled release of the antibiotic on demand.  相似文献   
10.
Acid dissociation, and thus liberation of excess protons in small water droplets, impacts on diverse fields such as interstellar, atmospheric or environmental chemistry. At cryogenic temperatures below 1 K, it is now well established that as few as four water molecules suffice to dissociate the generic strong acid HCl, yet temperature-driven recombination sets in simply upon heating that cluster. Here, the fundamental question is posed of how many more water molecules are required to stabilize a hydrated excess proton at room temperature. Ab initio path integral simulations disclose that not five, but six water molecules are needed at 300 K to allow for HCl dissociation independently from nuclear quantum effects. In order to provide the molecular underpinnings of these observations, the classical and quantum free energy profiles were decomposed along the dissociation coordinate in terms of the corresponding internal energy and entropy profiles. What decides in the end about acid dissociation, and thus ion pair formation, in a specific microsolvated water cluster at room temperature is found to be a fierce competition between classical configurational entropy and internal energy, where the former stabilizes the undissociated state whereas the latter favors dissociation. It is expected that these are generic findings with broad implications on acid–base chemistry depending on temperature in small water assemblies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号