首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   866篇
  免费   76篇
  国内免费   3篇
化学   694篇
晶体学   5篇
力学   24篇
数学   59篇
物理学   163篇
  2024年   1篇
  2023年   30篇
  2022年   18篇
  2021年   33篇
  2020年   49篇
  2019年   41篇
  2018年   34篇
  2017年   23篇
  2016年   62篇
  2015年   41篇
  2014年   52篇
  2013年   71篇
  2012年   81篇
  2011年   81篇
  2010年   47篇
  2009年   28篇
  2008年   42篇
  2007年   39篇
  2006年   34篇
  2005年   16篇
  2004年   16篇
  2003年   19篇
  2002年   9篇
  2001年   10篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有945条查询结果,搜索用时 234 毫秒
1.
The syntheses, structures, and chemotherapeutic activities of Ag(I)‐, Au(I)‐, and Ru(II)‐complexes ligated to a novel N‐heterocyclic carbene ligand, 2‐(4‐nitrophenyl)imidazo[1,5‐a]pyridin‐2‐ylidene ( 1 ), are described. The corresponding complexes, [Ag( 1 )2][PF6], [Au( 1 )2][PF6] ( 3 ), and [Ru( 1 )(p‐cymene)Cl][PF6] ( 4 ), were prepared using convenient transmetallation chemistry and characterized using a range of spectroscopic and analytical techniques. X‐ray crystallography revealed that complexes 2 and 3 adopted linear structures whereas 4 exhibited a prototypical “piano‐stool”‐like geometry; the structural assignments were further supported by DFT calculations. A series of in vitro studies revealed that while the aforementioned Ag(I), Au(I) and Ru(II) complexes exhibited significant cytotoxicities against the human colon adenocarcinoma (HCT 116), lung cancer (A549), and breast cancer (MCF7) cell lines, the Ru derivative was most prominent.  相似文献   
2.
3.
4.
Abstract

Enlightened by the Caputo fractional derivative, the present study deals with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena due to the influence of magnetic field and moving heat source in a rod in the context of three-phase lag (TPL) theory of thermoelasticity. Both ends of the rod are fixed and heat insulated. Employing Laplace transform as a tool, the problem has been transformed into the space-domain and solved analytically. Finally, solutions in the real-time domain are obtained by applying the inverse Laplace transform. Numerical calculation for stress, displacement, and temperature within the rod is carried out and displayed graphically. The effect of moving heat source speed on temperature, stress, and temperature is studied. It is found from the distributions that the temperature, thermally induced displacement and stress of the rod are found to decrease at large source speed. For the better understanding of the effect of moving heat source on all the distributions, three animations are added.  相似文献   
5.
The local magnetic structure in the [FeIII(Tp)(CN)3] building block was investigated by combining paramagnetic Nuclear Magnetic Resonance (pNMR) spectroscopy and polarized neutron diffraction (PND) with first-principle calculations. The use of the pNMR and PND experimental techniques revealed the extension of spin-density from the metal to the ligands, as well as the different spin mechanisms that take place in the cyanido ligands: Spin-polarization on the carbon atoms and spin-delocalization on the nitrogen atoms. The results of our combined density functional theory (DFT) and multireference calculations were found in good agreement with the PND results and the experimental NMR chemical shifts. Moreover, the ab-initio calculations allowed us to connect the experimental spin-density map characterized by PND and the suggested distribution of the spin-density on the ligands observed by NMR spectroscopy. Interestingly, significant differences were observed between the pseudo-contact contributions of the chemical shifts obtained by theoretical calculations and the values derived from NMR spectroscopy using a simple point-dipole model. These discrepancies underline the limitation of the point-dipole model and the need for more elaborate approaches to break down the experimental pNMR chemical shifts into contact and pseudo-contact contributions.  相似文献   
6.
Two vanadium (IV) complexes [VIVO(Haeae-sal)(MeOH)]+ ( 1 ) and [VIVO(Haeae-hyap)(MeOH)]+ ( 2 ) were prepared by reacting [VO(acac)2] with ligands [H2aeae-sal] ( I ) and [H2aeae-hyap] ( II ) respectively. Condensation of 2-(2-aminoethylamino)ethanol with salicylaldehyde and 2-hydroxyacetophenone produces the ligands ( I ) and ( II ) respectively. Both vanadium complexes 1 and 2 are sensitive towards aerial oxygen in solution and rapidly convert into vanadium(V) dioxido species. Vanadium(V) dioxido species crystalizes as the dimeric form in the solid-state. Single-crystal XRD analysis suggests octahedral geometry around each vanadium center in the solid-state. To access the benefits of heterogeneous catalysis, vanadium(V) dioxido complexes were anchored into the polymeric chain of chloromethylated polystyrene. All the synthesized neat and supported vanadium complexes have been studied by a number of techniques to confirm their structural and functional properties. Bromoperoxidase activity of the synthesized vanadium(V) dioxido complexes 3 and 4 was examined by carrying out oxidative bromination of salicylaldehyde and oxidation of thioanisole. In the presence of hydrogen peroxide, 3 shows 94.4% conversion ( TOF value of 2.739 × 102 h−1) and 4 exhibits 79.0% conversion (TOF value of 2.403 × 102 h−1) for the oxidative bromination of salicylaldehyde where 5-bromosalicylaldehyde appears as the major product. Catalysts 3 and 4 also efficiently catalyze the oxidation of thioanisole in the presence of hydrogen peroxide where sulfoxide is observed as the major product. Covalent attachment of neat catalysts 3 and 4 into the polymer chain enhances substrate conversion (%) and their catalytic efficiency increases many folds, both in the oxidative bromination and oxidation of thioether. Polymer supported catalysts 5 displayed 98.8% conversion with a TOF value of 1.127 × 104 h−1 whereas catalyst 6 showed 95.7% conversion with a TOF value of 4.675 × 103 h−1 for the oxidative bromination of salicylaldehyde. These TOF values are the highest among the supported vanadium catalysts available in the literature for the oxidative bromination of salicylaldehyde.  相似文献   
7.
A series of copper (II) ( 1 and 3 ) and cobalt (II/III) ( 2 , 4 and 5 ) complexes comprising different imino‐phenolate ligands DCH , DTH and DBH 2 (where DCH = 2,4‐dichloro‐6‐((mesitylimino)methyl)phenol, DTH = 2,4‐di‐tert‐butyl‐6‐((mesitylimino)methyl) phenol and DBH 2 = 2,4‐dibromo‐6‐((mesitylimino)methyl)phenol) have been prepared with excellent yield and high purity. By utilizing different spectroscopic tools such as UV–visible, electrospray ionization (ESI)‐mass, Fourier‐transform infrared (FTIR) spectrometry and elemental analysis, the prepared complexes ( 1 – 5 ) were thoroughly characterized. The molecular structure of the synthesized complexes was ascertained by using single‐crystal X‐ray diffraction studies (SCXRDs). The experiment reveals that Complexes 1 – 5 bind to calf thymus DNA (CT‐DNA) through non‐intercalative way with good interacting abilities. However, 1 – 5 are excellent quenchers of the fluorescence intensity of bovine serum albumin (BSA) following the static pathway. Additionally, they had shown remarkable cytotoxic potential against MCF‐7 (mammary gland adenocarcinoma) and A549 (lung adenocarcinoma) cell lines. The IC50 values associated with these complexes were much lower than the conventional drug cisplatin. Apoptosis‐induced cell death was confirmed from the DNA fragmentation studies and Hoechst 33342 staining. The 2′,7′‐dichlorofluorescein diacetate (DCFDA) assay indicates that the complex mediated reactive oxygen species (ROS) generation is accountable for governing the apoptosis mechanism via oxidative cell distress. Apart from these studies, by carrying out density functional theory (DFT) method, highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap calculations and optimized structures of the synthesized complexes were accomplished.  相似文献   
8.
9.
The chemical nature of the DNA bases is an important factor in sequence-mediated association of DNA molecules. Nucleotides are the fundamental DNA elements and the base identity impacts the molecular properties of nucleotide fragments. It is interesting to study the fundamental nature of nucleotides in DNA, on the basis of base-specific interactions, association, and modes of standard atomic or molecular interactions. With all-atom molecular dynamics simulations of model dinucleotide and tetranucleotide systems having single-stranded dinucleotide or tetranucleotide fragments of varying sequences, we show how the base identity and interactions between the different bases as well as water may affect the clustering properties of nucleotides fragments in an ionic solution. Sequence-dependent differential interactions between the nucleotide fragments, ionic concentration, and elevated temperature are found to influence the clustering properties and dynamics of association. Well-known epigenetic modification of DNA, that is, cytosine methylation also promotes dinucleotide clustering in solution. These observations point to one possible chemical nature of the DNA bases, as well as the importance of the base pairing, base stacking, and ionic interactions in DNA structure formation, and DNA sequence-mediated association. Sequence- and the ionic environment-mediated self-association properties of the dinucleotides indicate its great potential to develop biological nanomaterials for desired applications.  相似文献   
10.
The factors/structural features which are responsible for the binding, activation and reduction of N2 to NH3 by FeMoco of nitrogenase have not been completely understood well. Several relevant model complexes by Holland et al. and Peters et al. have been synthesized, characterized and studied by theoretical calculations. For a matter of fact, those complexes are much different than real active N2-binding Fe-sites of FeMoco, which possesses a central C(4-) ion having an eight valence electrons as an μ6-bridge. Here, a series of [(S3C(0))Fe(II/I/0)-N2]n- complexes in different charged/spin states containing a coordinated σ- and π-donor C(0)-atom which possesses eight outer shell electrons [carbone, (Ph3P)2C(0); Ph3P→C(0)←PPh3] and three S-donor sites (i.e. -S-Ar), have been studied by DFT, QTAIM, and EDA-NOCV calculations. The effect of the weak field ligand on Fe-centres and the subsequent N2-binding has been studied by EDA-NOCV analysis. The role of the oxidation state of Fe and N2-binding in different charged and spin states of the complex have been investigated by EDA-NOCV analyses. The intrinsic interaction energies of the Fe−N2 bond are in the range from −42/−35 to −67 kcal/mol in their corresponding ground states. The S3C(0) donor set is argued here to be closer to the actual coordination environment of one of the six Fe-centres of nitrogenase. In comparison, the captivating model complexes reported by Holland et al. and Peter et al. possess a stronger π-acceptor C-ring (S2Cring donor, π-C donor) and stronger donor set like CP3 (σ-C donor) ligands, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号