首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3561篇
  免费   109篇
  国内免费   15篇
化学   2861篇
晶体学   30篇
力学   37篇
数学   370篇
物理学   387篇
  2023年   14篇
  2021年   67篇
  2020年   58篇
  2019年   57篇
  2018年   44篇
  2017年   45篇
  2016年   109篇
  2015年   94篇
  2014年   117篇
  2013年   214篇
  2012年   211篇
  2011年   248篇
  2010年   143篇
  2009年   143篇
  2008年   259篇
  2007年   206篇
  2006年   212篇
  2005年   195篇
  2004年   162篇
  2003年   129篇
  2002年   99篇
  2001年   37篇
  2000年   26篇
  1999年   35篇
  1998年   25篇
  1997年   36篇
  1996年   44篇
  1995年   36篇
  1994年   35篇
  1993年   30篇
  1992年   30篇
  1991年   25篇
  1990年   13篇
  1989年   23篇
  1988年   17篇
  1987年   16篇
  1986年   14篇
  1985年   22篇
  1984年   21篇
  1983年   16篇
  1982年   31篇
  1981年   27篇
  1980年   29篇
  1979年   22篇
  1978年   18篇
  1977年   17篇
  1975年   13篇
  1956年   19篇
  1955年   37篇
  1954年   57篇
排序方式: 共有3685条查询结果,搜索用时 15 毫秒
1.
The present research is based on the use of a recently developed comprehensive two‐dimensional gas chromatography thermal modulator, which is defined as solid‐state modulator. The transfer device was installed on top of a single gas chromatography oven, while benchtop low‐resolution time‐of‐flight mass spectrometry was used to monitor the compounds exiting the second analytical column. The solid‐state modulator was first described by Luong et al. in 2016, and it is a moving modulator that does not require heating and cooling gases to generate comprehensive two‐dimensional gas chromatography data. The accumulation and remobilization steps occur on a trapping capillary, this being subjected to thermoelectric cooling and micathermic heating. In this study, the effects of the gas linear velocity on the modulation performance were evaluated by using two different uncoated trapping capillaries, viz., 0.8 m × 0.25 mm id and 0.8 m × 0.20 mm id. Solid‐state modulator applications were carried out on a standard solution containing n‐alkanes (C9, C10, C12), and on a sample of diesel fuel. The results indicated that the type of trapping capillary and gas velocity have a profound effect on modulation efficiency.  相似文献   
2.
3.
We demonstrate for formic and acetic acid dissolved in water as examples that the binary quantum cluster equilibrium (bQCE) approach can predict acid strengths over the whole range of acid concentrations. The acid strength increases in a complex rather than a simple way with increasing mole fraction of the acid from 0 to 0.7, reflecting the complex interplay between the dissociated ions or conjugate bases available as compared to the acid and water molecules. Furthermore, our calculated ion concentrations meet the experimental maximum of the conductivity with excellent agreement for acetic acid and satisfactorily for the formic acid/water mixture. As only a limited number of simple quantum‐chemical calculations are required for the prediction, bQCE is clearly a valuable approach to access these quantities also in non‐aqueous solutions. It is a highly valuable asset for predicting ionization processes in highly concentrated solutions, which are relevant for biological and chemical systems, as well as technological processes.  相似文献   
4.
Since the pioneering work of Ned Seeman in the early 1980s, the use of the DNA molecule as a construction material experienced a rapid growth and led to the establishment of a new field of science, nowadays called structural DNA nanotechnology. Here, the self-recognition properties of DNA are employed to build micrometer-large molecular objects with nanometer-sized features, thus bridging the nano- to the microscopic world in a programmable fashion. Distinct design strategies and experimental procedures have been developed over the years, enabling the realization of extremely sophisticated structures with a level of control that approaches that of natural macromolecular assemblies. Nevertheless, our understanding of the building process, i.e., what defines the route that goes from the initial mixture of DNA strands to the final intertwined superstructure, is, in some cases, still limited. In this review, we describe the main structural and energetic features of DNA nanoconstructs, from the simple Holliday junction to more complicated DNA architectures, and present the theoretical frameworks that have been formulated until now to explain their self-assembly. Deeper insights into the underlying principles of DNA self-assembly may certainly help us to overcome current experimental challenges and foster the development of original strategies inspired to dissipative and evolutive assembly processes occurring in nature.  相似文献   
5.
6.
In this paper we consider the long-time asymptotics of a linear version of the Smoluchowski equation which describes the evolution of a tagged particle moving in a random distribution of fixed particles. The volumes v of these particles are independently distributed according to a probability distribution which decays asymptotically as a power law v?σ. The validity of the equation has been rigorously proved in [22] taking as a starting point a particle model and for values of the exponent σ>3, but the model can be expected to be valid, on heuristic grounds, for σ>53. The resulting equation is a non-local linear degenerate parabolic equation. The solutions of this equation display a rich structure of different asymptotic behaviors according to the different values of the exponent σ. Here we show that for 53<σ<2 the linear Smoluchowski equation is well-posed and that there exists a unique self-similar profile which is asymptotically stable.  相似文献   
7.
8.
A time-domain 1H nuclear magnetic resonance relaxometry method was elaborated for the rapid microstructural characterization of mozzarella cheese. For this purpose, there is a strong need to know how the experimentally determined T2 relaxation time distribution can be related to specific constituents in mozzarella. In this study, a detailed investigation is offered for fresh and aged low-moisture mozzarella cheese, often applied as a pizza cheese, by application of both a conventional Carr–Purcell–Meiboom–Gill (CPMG) sequence and a free-induction decay CPMG (FID-CPMG) sequence. The relaxation behavior was further elucidated by addition of deuterium oxide and by mild heat treatment of samples. The relaxation times of water protons in mozzarella were found to range from a few microseconds to some tens of milliseconds (in aged mozzarella) or to about hundred milliseconds (in fresh mozzarella). The upper limit of the T2 distribution can even be extended to the seconds range upon releasing water protons from the mozzarella matrix using a mild heat treatment or upon addition of deuterated water. Both stimuli also provided evidence for the absorption of water into the cheese matrix. The potential release and uptake of water demonstrated that mozzarella acts as a very dynamic system during production and storage. The detected differences in the behavior of the water fraction between fresh and aged low-moisture mozzarella might be utilized to study the influence of either production and/or storage conditions on the cheese ripening process.  相似文献   
9.
Franchi  Franca  Lazzari  Barbara  Nibbi  Roberta 《Meccanica》2020,55(11):2199-2214
Meccanica - We take up the challenge to explain the correlation between the Jeans instability topic towards star formation within the accelerated expansion of universe and the role of torsional...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号