首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   10篇
  国内免费   2篇
化学   145篇
晶体学   3篇
力学   6篇
数学   5篇
物理学   26篇
  2024年   1篇
  2022年   1篇
  2021年   7篇
  2020年   4篇
  2019年   9篇
  2018年   13篇
  2017年   6篇
  2016年   11篇
  2015年   9篇
  2014年   9篇
  2013年   28篇
  2012年   19篇
  2011年   8篇
  2010年   9篇
  2009年   14篇
  2008年   15篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  1999年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
1.
Two new complexes of [Mn(2-MPyzCI)2Cl2].H2O (1) and [Mn(2-MPyzCI)2(H2O)2](NO3)2 (2) were synthesized from the reaction of MnX2.4H2O (X=Cl? and NO3?) with 2-cyanopyrazine in methanolic solution. The chelating methyl pyrazine-2-carboximidate (2-MPyzCI) ligand is formed via the methanolysis of 2-cyanopyrazine. Although coordination environment around manganes(II) ions is similar, but these complexes are different in geometrical position of 2-MPyzCI ligands. As both compounds are synthesized under the same reaction conditions, the only difference between these two complexes are counter ions and changing of geometrical position of ligands can be considered as a result of influence of the counter-anions on the molecular structures.  相似文献   
2.
3.
4.
The synthesis of two tetrathiafulvalene-appended pyridinehydrazone pyrimidine ligands, namely (Z)-4-(2-((5-([2,2′-bi(1,3-dithiolylidene)]-4-yl)pyridin-2-yl)methylene) hydrazinyl)-6-chloropyrimidine L1 and (Z)-4-(2-((6-([2,2′-bi(1,3-dithiolylidene)]-4-yl)pyridin-2-yl)methylene) hydrazinyl)-6-chloropyrimidine L2 is described. Ligand L1 was reacted with cobalt(II) to yield a cationic metal complex [Co(L1)2] while ligand L2 was reacted with zinc(II) to afford a neutral metal complex [ZnL2Cl2]. The crystal structure analysis of [Co(L1)2] indicate that Co(II) ion is coordinated by six nitrogen atoms from two perpendicular ligands while in [ZnL2Cl2], Zn(II) is coordinated by two chlorine atoms and three nitrogen atoms. The electrochemical behavior indicate that ligands L1 and L2 and the zinc(II) complex are suitable fort the preparation of crystalline radical cation salts. Finally the determination of MIC80 values against C. albicans, C. glabrata, C. parapsilosis, C. krusei and E. dermatitidis revealed that the cobalt(II) metal complex [Co(L1)2] is active against all the studied fungi.  相似文献   
5.
The complexes [Zn(phenylacetato)2(2-aminopyridin)2] (3), [Zn(phenylacetato)2(1,10-phenanthroline)]·H2O (4), and [Zn(phenylacetato)2(2,9-dimethyl-1,10-phenanthroline)]·0.5 H2O (5) were prepared and characterized by IR-, UV–Visible, 1H and 13C NMR spectroscopy, and single crystal X-ray diffraction. BNPP hydrolysis of the complexes and their parent nitrogen ligands showed that the hydrolysis rate of bis-(4-nitrophenyl) phosphate (BNPP) was 1.7 × 105 L mol?1 s?1 for 3, 3.1 × 105 L mol?1 s?1 for 4 and 4.3 × 104 L mol?1 s?1 for 5. Antibacterial activities show the effect of complexation on activity against Gram-positive (S. epidermidis, S. aureus, E. faecalis, M. luteus and B. subtilis) and Gram-negative (K. pneumonia, E. coli, P. mirabilis and P. aeruginosa) bacteria using the agar well diffusion method. Complex 4 showed good activity against G? bacteria except P. aeruginosa, and against G+ bacteria except E. ferabis. Complex 5 showed no activity against G? bacteria, low activity against M. luteus and B. subtilis bacteria and high activity against S. epidemidis and S. aureus. Complex 3 did not show any activity against G? or G+ bacteria.  相似文献   
6.
Two zinc(II) complexes [Zn(6,6′-dimethyl-2,2′-bipy)Cl2] n (1) and [Zn(6,6′-dimethyl-2,2′-bipy)I2] n (2) are synthesized from the reaction of the 6,6′-dimethyl-2,2′-bipy ligand with ZnCl2 and ZnI2. Zinc(II) oxide nanoparticles are synthesized by the thermolysis of [Zn(6,6′-dimethyl-2,2′-bipy)Cl2] n (1) and [Zn(6,6′-dimethyl-2,2′-bipy)I2] n (2) at two different temperatures. The ZnO nanoparticles are characterized by X-ray diffraction and scanning electron microscopy (SEM). SEM images show the average size of the ZnO nanoparticles produced of 50 nm and 60 nm in compounds 1 and 2 respectively.  相似文献   
7.
Graphene oxide ‐ Fe3O4 ‐ NH3+H2PW12O40 magnetic nanocomposite (GO/Fe3O4/HPW) was prepared by linking amino ‐ functionalized Fe3O4 nanoparticles (Fe3O4 ‐ NH2) on the graphene oxide (GO), and then grafting 12 ‐ tungstophosphoric acid (H3PW12O40) on the graphene oxide ‐ magnetite hybrid (GO ‐ Fe3O4 ‐ NH2). The obtained GO/Fe3O4/HPW nanocomposite was well characterized with different techniques such as FT ‐ IR, TEM, SEM, XRD, EDX, TGA ‐ DTA, AGFM, ICP and BET measurements. The used techniques showed that the graphene oxide layers were well prepared and the various stages of preparation of the GO/Fe3O4/HPW nanocomposites successfully completed. This new nanocomposite displayed excellent performance as a heterogeneous catalyst in the oxidation of alcohols with H2O2. The as ‐ prepared GO/Fe3O4/HPW catalyst was more stable and recyclable at least five times without significantly reducing its catalytic activity.  相似文献   
8.
9.
The adsorption behavior of Rhodamine B dye from aqueous solutions was investigated onto the cation-exchange resin, Duolite C-20 (hydrogen form). The effects of various experimental factors; sorbent amount, contact time, dye concentration and temperature, were studied by using the batch technique. Lagergren pseudo-first-order equation shows good applicability with high correlation coefficients for all ranges of initial dye concentrations and at different temperatures. This equation was used to describe the kinetics of the dye adsorption process. The adsorption constants were evaluated by using both the Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameters were obtained and it was found that the adsorption of Rhodamine B dye onto Duolite C-20 resin was an endothermic and spontaneous process at the temperatures under investigation.  相似文献   
10.
A simple, inexpensive, and efficient one-pot synthesis of 2,3-dihydroquinazoline-4(1H)-one derivatives under solvent-free conditions using a catalytic amount of iodine with excellent product yields is reported. This methodology provides easy, quantitative access to various 2,3-dihydroquinazoline-4(1H)-one derivatives, using commercially available iodine as a catalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号