 首页 | 本学科首页 官方微博 | 高级检索

 按 中文标题 英文标题 中文关键词 英文关键词 中文摘要 英文摘要 作者中文名 作者英文名 单位中文名 单位英文名 基金中文名 基金英文名 杂志中文名 杂志英文名 栏目英文名 栏目英文名 DOI 责任编辑 分类号 杂志ISSN号 检索 检索词:

 收费全文 1篇
 物理学 1篇
 2005年 1篇

1
1.
Differential equations and maps are the most frequently studied examples of dynamical systems and may be considered as continuous and discrete time-evolution processes respectively. The processes in which time evolution takes place on Cantor-like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation of these systems requires an appropriate framework. A new calculus calledF α-calculus, is a natural calculus on subsetsF⊂ R of dimension α,0 < α ≤ 1. It involves integral and derivative of order α, calledF α-integral andF α-derivative respectively. TheF α-integral is suitable for integrating functions with fractal support of dimension α, while theF α-derivative enables us to differentiate functions like the Cantor staircase. The functions like the Cantor staircase function occur naturally as solutions ofF α-differential equations. Hence the latter can be used to model fractal-time processes or sublinear dynamical systems. We discuss construction and solutions of some fractal differential equations of the form whereh is a vector field andD F,t α is a fractal differential operator of order α in timet. We also consider some equations of the form whereL is an ordinary differential operator in the real variablex, and(t,x)F × Rn whereF is a Cantor-like set of dimension α. Further, we discuss a method of finding solutions toF α-differential equations: They can be mapped to ordinary differential equations, and the solutions of the latter can be transformed back to get those of the former. This is illustrated with a couple of examples.  相似文献
1