首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   4篇
物理学   8篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
何小梅  李晓峰  张冬云  车雅良 《光子学报》2008,37(12):2427-2429
在介绍无线光通信信道及系统模型的基础上,推导了无线光通信未编码系统和RS编码系统在已知信道边信息条件下的平均误码率,从接收光功率和对数振幅起伏方差方面对RS码编码系统和Turbo编码系统的性能进行比较.仿真结果表明,采用编码方案可以有效地改善大气湍流对通信链路性能的恶化,Turbo码编码方案比RS码编码方案能更好地抗大气湍流干扰.  相似文献   
2.
 基于广义非线性薛定谔方程,利用分步傅里叶法数值模拟了超高斯时间分布的飞秒脉冲在光子晶体光纤中的传输特性。结果表明:超高斯脉冲比高斯脉冲在更短距离内形成孤子衰变,而且出现比强孤子功率稍低的次峰,孤子自频移更显著;另外,三阶色散会导致脉冲波形及频谱不对称,出现精细结构,并且有形成孤子的趋势;脉冲内拉曼散射对脉冲有平滑作用;自陡改变了主峰与次峰之间的能量分配。  相似文献   
3.
脉冲堆积技术是高功率激光系统中产生任意种子脉冲的方案之一.该方案利用大啁啾光纤布拉格光栅的宽带特性来展宽宽带短脉冲,以满足脉冲堆积组件的需求.利用传输矩阵法模拟了大啁啾宽带光纤布拉格光栅的反射谱、时延曲线等特性.研究发现,光纤光栅的啁啾因子决定了色散量以及带宽的大小,但增加色散量的代价是降低了光纤光栅的带宽;光栅长度越长,反射带宽明显增加,但色散量变化不大.研究结果对高功率前端系统的设计具有一定的指导意义.  相似文献   
4.
基于高功率激光系统前端全光纤脉冲整形系统输出的脉冲特性,以两路脉冲堆积为例,理论分析并讨论了光纤中群速度色散的作用,提出了分离距离的概念,得出了整形脉冲时间调制周期、瞬时频率,以及初始啁啾对脉冲波形影响的解析结果。数值模拟了脉冲波形、瞬时频率在正、负色散光纤中随时间的变化特性,以及时间调制周期与传输距离之间的关系。结果表明,堆积脉冲不同位置瞬时频率变化不同;脉冲时间调制周期与时延和初始啁啾以及色散符号有关。  相似文献   
5.
基于非线性耦合波理论分析了三倍频过程中群速度之间的关系,推导出三波混频条件下的群速匹配关系式.对超短脉冲在Ⅱ类KDP晶体中的混频过程进行了模拟分析,结果表明:当三波(基波ω,谐波2ω和3ω)的群速度满足该匹配关系式时,三倍频(3ω)的带宽和转换效率均可达最大值;而随着三波群速度对该关系式的偏离逐渐增大,带宽变窄、转换效率下降.导出的三波群速匹配关系式对寻找合适的色散晶体和选择有效的匹配措施、实现宽带三次谐波转换具有指导意义.  相似文献   
6.
 分析了Yb3+的能级结构、光谱特性以及激光发射特性。实验研究了中心波长为1 100 nm、输出功率为61.6W、斜率效率为55%的高功率掺Yb3+双包层光纤激光器。采用了两个中心波长在915 nm的高功率激光二极管分别从光纤的两端将泵浦光耦合进入光纤,采用45°对波长在(1 100±10) nm的激光高反,对波长在(915±10) nm的泵浦光高透的双色镜将激光输出,实验发现了掺Yb3+双包层光纤的合作发光效应。理论分析表明,掺Yb3+双包层光纤中合作发光效应是由Yb3+对在激光产生过程中的吸收与发射引起的。  相似文献   
7.
啁啾脉冲堆积及其放大特性   总被引:2,自引:0,他引:2       下载免费PDF全文
 根据啁啾脉冲堆积的原理以及模型介绍了两路脉冲堆积时脉冲的时间与频谱特性,分析了堆积脉冲产生时间与频谱调制,以及交叠区产生非线性频率啁啾的原因。通过非线性薛定谔方程,分析了堆积脉冲的放大特性,介绍了啁啾参量对放大结果的影响以及放大后堆积脉冲的频率啁啾的变化。研究表明,在堆积脉冲的放大过程中自相位调制效应非常明显,严重影响了脉冲的频谱与频率啁啾。  相似文献   
8.
合作发光效应、热效应以及非线性效应限制了单根掺Yb^3+光纤激光器输出功率的进一步提高。根据能级间的吸收与辐射,分析了掺Yb^3+双包层光纤中的合作发光效应,分析表明,随着Yb^3+的掺杂浓度的增大,光纤中合作发光增强,抽运光越强,合作发光也越强。实验研究了输出功率61.6W,斜率效率为55%的双端抽运的掺Yb^3+双包层光纤激光器的合作发光效应,研究表明,随着抽运光功率的增大,合作发光强度增强,掺杂浓度越大,光纤中合作发光效应也越强。这一结果有利于进一步提高掺Yb^3+光纤激光器的效率。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号