首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
物理学   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, which is based on right-handed nonlinear transmission lines and consists of a coplanar waveguide transmission line and periodically distributed GaAs planar Schottky varactor diode. The distributed-Schottky transmission-line-type phase shifter at a bias voltage greater than 1.5 V presents a continuous 0°–360° differential phase shift over a frequency range from 0 to 33 GHz. It is demonstrated that the minimum insertion loss is about 0.5 dB and that the return loss is less than-10 dB over the frequency band of 0–33 GHz at a reverse bias voltage less than 4.5 V. These excellent characteristics, such as broad differential phase shift, low insertion loss, and return loss, indicate that the proposed phase shifter can entirely be integrated into a phased array radar circuit.  相似文献   
2.
黄杰  董军荣  杨浩  张海英  田超  郭天义 《中国物理 B》2011,20(6):60702-060702
A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture GaAs-based monolithic frequency multiplication based on 23-section nonlinear transmission lines (NLTLs) consisting of a coplanar waveguide transmission line and periodically distributed PSVDs. The throughout design and optimization procedure of 23-section monolithic NLTLs for frequency multiplication in the k-band range is based on a large signal equivalent model of PSVD extracted from small-signal S-parameter measurements. This paper reports that the distributed SPVD exhibits a capacitance ratio of 5.4, a normalized capacitance of 0.86 fF/μm2 and a breakdown voltage in excess of 22 V. The integrated 23-section NLTLs fed by 20-dBm input power demonstrates a 26-GHz peak second harmonic output power of 14-dBm with 25.3% conversion efficiency in the second harmonic output frequency range of 6 GHz-26 GHz.  相似文献   
3.
黄杰  杨浩  田超  董军荣  张海英  郭天义 《中国物理 B》2010,19(12):127203-127203
GaAs-based planar Gunn diodes with AlGaAs hot electron injector have been successfully developed to be used as a local oscillator of 76 GHz in monolithic millimeter-wave integrated circuits.We designed two kinds of structure diode,one has a fixed distance between the anode and cathode,but has variational cathode area,the other has a fixed cathode area,but has different distances between two electrodes.The fabrication of Gunn diode is performed in accordance with the order of operations:cathode defining,mesa etching,anode defining,isolation,passivation,via hole and electroplating.A peak current density of 29.5 kA/cm 2 is obtained.And the characteristics of negative differential resistance and the asymmetry of the current-voltage curve due to the AlGaAs hot electron injector are discussed in detail.It is demonstrated that the smaller size of active area corresponds to the smaller current,and the shorter distance between anode and cathode also corresponds to the lower threshold voltage and higher peak current,and hot electron injector can effectively enhance the radio frequency conversion efficiency and output power.  相似文献   
4.
董军荣  杨浩  田超  黄杰  张海英 《中国物理 B》2012,21(6):67303-067303
The left-handed nonlinear transmission line(LH-NLTL) based on monolithic microwave integrated circuit(MMIC) technology possesses significant advantages such as wide frequency band,high operating frequency,high conversion efficiency,and applications in millimeter and submillimeter wave frequency multiplier.The planar Schottky varactor diode(PSVD) is a major limitation to the performance of the LH-NLTL frequency multiplier as a nonlinear component.The design and the fabrication of the diode for such an application are presented.An accurate large-signal model of the diode is proposed.A 16 GHz-39.6 GHz LH-NLTL frequency doubler using our large-signal model is reported for the first time.The measured maximum output powers of the 2nd harmonic are up to 8 dBm at 26.4 GHz,and above 0 dBm from 16 GHz to 39.6 GHz when the input power is 20 dBm.The application of the LH-NLTL frequency doubler furthermore validates the accuracy of the large-signal model of the PSVD.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号