首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
化学   1篇
物理学   4篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有5条查询结果,搜索用时 8 毫秒
1
1.
利用密度泛函理论,在slab模型下,研究N_2在单原子催化剂Ir_1/MoS_2上的吸附行为,结果表明,N_2的优势吸附位为Ir原子的顶位,构型为垂直向下,吸附能达到1.57 eV,是化学吸附.电子结构说明主要是吸附N原子的2Pz轨道在Z方向上与Ir的5d_z~2、5d_(xz)、5d_(yz)、6P_z混合得以使N_2稳定吸附在Ir原子上.  相似文献   
2.
NH3的催化分解一直是制备高纯度氢的有效途径之一,因此具有良好的催化活性的贵金属被广泛的应用于催化解离的研究中.然而,由于纯金属催化剂的利用效率低,增加催化成本.最近的研究发现单原子催化剂Ir1/MoS2以其突出的优势被认为是一种潜在的能替代现有贵金属催化剂的材料.本文采用密度泛函理论与周期性平板模型相结合的方法,研究了NH3在单原子催化剂Ir1/MoS2上的吸附与活化.结果表明:NH3的优势吸附位为Ir原子的顶位,构型为倾斜结构(atop),NH3与体系表面的金属Ir成键,吸附能达到1.63 eV,是化学吸附;进一步分析了NH3直接催化分解的反应路径,给出了相应的反应热、活化能,结果显示NH3在atop位的解离比脱附有利,第一步脱氢反应活化能最小,N-H键易断裂,第二步反应能垒较高,此步为整个反应的决速步.  相似文献   
3.
采用密度泛函理论,结合周期性平板模型,研究了N_2H_4在Ir(100)表面上的吸附和脱氢分解.计算了N_2H_4以及其脱氢中间体(N_2H_x,x=1,2,3)的最稳定的吸附位置和吸附结构,分析了其电子结构.在Ir(100)面上,N_2H_4以反式构象的形式优先吸附在顶位,N_2H3,N_2H_2及N_2H均以顺式构象吸附在桥位,它们的吸附能均较高,说明N_2Hx均能稳定吸附在Ir(100)面上,且均为化学吸附,N_2H_2吸附能最大.通过N_2H_4的一系列脱氢反应(N_2H_x→N_2H_(x-1)+H),确定了每步反应的反应能量、过渡态的结构以及所需活化能,结果表明,N_2H_4逐步脱氢得到N_2和H_2环境友好型产物的反应是可行的,且第三步反应为速控步.  相似文献   
4.
采用密度泛函理论,结合周期性平板模型,研究了NH_3在Ir(211)和Ir(221)表面上的吸附行为.计算结果显示,在Ir(211)、(221)两个面上,NH_3的优势吸附位皆为脊上的top位,吸附能均达到1.0 eV以上,都为化学吸附.电子结构计算结果表明,NH_3通过其N原子的2p_z轨道与底物金属Ir的5d_z~2轨道混合吸附于表面.  相似文献   
5.
采用密度泛函理论,在slab模型下,研究了NH_x(x=1~3)在Ir(100)、Ir(111)和Ir(110)表面上的最稳定吸附位置、几何构型以及逐步脱氢分解过程,计算了相应的吸附能和活化能.计算结果表明,在Ir(100)、Ir(111)面上,NH_3是以C_3轴垂直吸附在顶位,在Ir(110)上,NH_3是以N-Ir键与表面成68.6°吸附在顶位,且吸附能依赖于表面的结构而不同,相比而言,NH_3更容易吸附在开放表面Ir(100)、Ir(110)面上,说明NH_3在这些表面的吸附具有结构敏感性.NH_(x(x=1~3))的分解,在Ir(100),NH_3的吸附与分解存在竞争,在Ir(110)面NH_3最容易分解,在Ir(111)面NH_3是分子性吸附,不能分解.NH_2、NH在三个表面均能够分解,在Ir(110)面活化能均较高.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号