首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   4篇
  国内免费   2篇
化学   3篇
物理学   8篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
排序方式: 共有11条查询结果,搜索用时 16 毫秒
1.
分子电子学自诞生之日起迅速发展,已成为一门21世纪的前沿强交叉基础科学,受到了人们的广泛关注。本文概述了分子电子学的发展和研究内容,以及最新研究进展,并对今后的前景进行了展望。  相似文献   
2.
有色可溶解性有机物(简称CDOM,又称为黄色物质),存在于所有自然水体中,可以用于指示水体有机物污染的状况。相比于常规采样监测方法,基于遥感数据反演CDOM具有重要优势。但是遥感数据反演CDOM的方法通常具有区域局限性,因此需要对不同区域水体进行反演方法的检验和完善。我国北方水体CDOM遥感反演的相关研究较少,选择位于河北省张家口市和北京市延庆区交界的官厅水库为研究区,利用2013年10月26日获取的水面遥感反射率光谱(Rrs(λ))和实验室测得的CDOM吸收系数(aCDOM(λ))数据,首次进行了CDOM浓度(以440 nm处CDOM的吸收系数(aCDOM(440))表示)反演。对半解析方法即QAA-CDOM方法进行了检验和改进,并建立了CDOM反演的经验模型。QAA-CDOM方法反演结果的均方根误差RMSE为0.10,平均相对误差σ为10.8%。通过实测数据计算了每个波段的水面以下上行辐照度与辐亮度的比值Q,代替了QAA-CDOM方法中的固定Q值,对QAA-CDOM方法进行改进,反演结果精度仅略有提升,RMSE=0.09, σ=10.2%。同时,用四个遥感反射率的比值与aCDOM(440)进行回归分析,建立了CDOM反演的经验模型。结果显示Rrs(531)/Rrs(551)与CDOM浓度的相关性最大,决定系数为0.63;基于该波段比值建立的CDOM反演经验模型的反演结果的均方根误差RMSE为0.08,平均相对误差σ为8.8%。经验方法反演结果的精度更高,但需要同步实测数据进行所选波长和模型系数的标定;半解析方法不需要标定,更易于推广。  相似文献   
3.
利用太阳光度计CE318反演气溶胶光学厚度改进算法的研究   总被引:5,自引:0,他引:5  
针对影响太阳分光光度计精度的各种因素误差分析,分别在太阳天顶角,大气光学质量,Rayleigh光学厚度,臭氧总量等方面做了方法上的改进,以提高气溶胶光学厚度的反演精度。利用一般的文献上的处理方法做为比较,先考虑各种影响因素单独影响,再综合考虑各因素的影响结果,提出了太阳分光光度计处理的高精度算法,并应用于太湖等实际测量的反演中。实验处理表明本文改进算法对提高气溶胶光学厚度反演的精度有着良好的效果。将为仪器的使用,数据的处理提供有益的参考。  相似文献   
4.
发展了一种通过两次高分子辅助转移和选择性氧等离子体刻蚀技术大量制备交叉碳纳米管-石墨烯异质结的无损方法. 拉曼光谱和导电性测试证明, 制备的单层石墨烯薄片在大面积范围内质量均一、导电性好. 而且, 本文所讨论的单层石墨烯的生长和随后的器件制备也提供了大面积制备石墨烯薄片图案化的可重复性方法. 该方法与传统的薄膜技术兼容, 只需简易的几步便可把图案化的石墨烯集成到大规模的微电子器件回路中, 有望实现流线型和自动化的石墨烯微电子器件的大量生产. 这些研究结果为进一步制备分子整流器和其它功能纳米/分子器件提供了技术基础.  相似文献   
5.
曾宇星  叶天舒  王阔  申茜 《物理学报》2015,64(4):49203-049203
基于2013年8月中国中东部地区持续高温及其减弱过程, 利用美国国家环境预报中心/美国国家大气研究中心逐日平均的500 hPa高度场、风场再分析资料和美国国家海洋和大气管理局的海温重建扩展资料进行分析, 通过前期海温强迫相似年的选取方法以及带通滤波和经验正交函数分解等方法提取出10–30 d的稳定分量, 并通过对稳定分量的诊断分析探究了这次持续高温及其减弱过程的维持机制. 研究发现: 通过选取与个例前期海温强迫最相似的30年来代替常规的气候态30 年(1981–2010 年), 所提取的气候态稳定分量所占的比重变化不大, 稍有减弱, 而异常型稳定分量占的比重显著性提高, 且其所刻画的影响异常事件的天气系统强度及稳定性明显提高, 能够更加清晰地显示延伸期天气过程的维持机制. 这表明在提取稳定分量时考虑前期的海温强迫作用是非常有必要的. 同时, 通过对延伸期稳定分量的分析, 表明此次持续高温及减退过程主要受到北极涛动、亚洲大陆中高纬纬向环流形势和西太平洋副热带高压(西太副高)强度、位置的共同影响.  相似文献   
6.
季飞  赵俊虎  申茜  支蓉  龚志强 《物理学报》2014,63(5):59201-059201
从冷暖系统配置的角度,选取东亚夏季风(EASM)和7月亚洲区极涡面积(APVA),分析了二者的气候特征与中国夏季降水分布之间的关系.在此基础上,将1951—2010年EASM和APVA的异常配置分为四种类型:A:季风强、极涡大;B:季风强、极涡小;C:季风弱、极涡大;D:季风弱、极涡小.研究发现,二者的异常配置下,中国夏季大尺度旱涝分布在季尺度上表现出多面性特征:A型年,夏季整体偏旱;B型年,夏季南涝北旱;C型年,夏季北涝南旱;D型年,夏季整体偏涝.由此可见,中国夏季旱涝总体分布除了与EASM有关外还与APVA密切相关,二者异常的不同配置下,夏季降水多寡和旱涝分布表现出了显著的差异和规律性,这对夏季降水总体趋势预测有一定的指示意义.此外,通过研究不同配置关系对应大气环流异常特征,并分析不同要素在夏季风和极涡关系变化中的作用,发现不同配置类型下夏季降水表现出的差异和规律性直接取决于环流场的整体配置,其中西太副高和中高纬阻塞形势起主导作用.  相似文献   
7.
8.
将有机场效应晶体管用于传感和开关实际应用的主要阻碍之一是其破坏性传感机制产生的一系列问题. 这里我们报道了一种智能的系统, 用光致变色分子螺吡喃(SP)和聚甲基丙烯酸甲酯(PMMA)结合作为栅介电材料, 得到的器件能以一种无损的方式, 通过光可逆调控器件的导电性能. 当螺吡喃分子发生可逆的光学异构时, 器件的电容和导电性随之发生显著而可逆的变化. 这种构象诱导电感耦合的作用机理提供了一种制备功能器件的新方法, 可以推广为利用其它刺激响应型分子来制备特定功能器件的普适性方法.  相似文献   
9.
近海台风对中国东部夏季降水的贡献   总被引:4,自引:0,他引:4       下载免费PDF全文
申茜  张世轩  赵俊虎  汪栩加 《物理学报》2013,62(18):189201-189201
目前汛期预测主要针对季风系统形成的降水, 而对台风等热带系统的影响并未考虑, 其主要原因是台风是一个剧烈的天气尺度过程, 与短期气候预测尺度并不匹配, 因而无法进行考虑. 这也成为提升汛期预测技巧的一个制约因素. 针对这样的问题, 本文从气候的角度, 提出一个能较为客观地衡量台风对夏季降水影响强弱的指数––台风影响指数. 利用1960–2011年中国东部站点降水资料及中国气象局上海台风所整理的热带气旋资料, 从月、季尺度对中国夏季台风影响强弱变化特征进行分析, 探讨台风对东部地区夏季降水的贡献. 结果表明: 1)台风从6月至8月呈增强的趋势, 6月份最弱, 7月份居中, 8月份最强; 2)从台风降水及占总降水的比例分布来看, 纬向呈东部高西部低, 经向呈从东北地区至华南地区依次增大的趋势, 长江以南地区台风降水量占夏季降水量的比重可达10%以上, 7, 8月份东南沿海地区的台风降水量最大可达100 mm以上, 可达当月总降水量的40%; 3)台风影响指数与夏季降水的相关表明, 台风对中国东部降水的影响具有时、空差异性, 6月份与华南地区呈负相关, 7 月份与东南沿海地区呈正相关, 而与长江中下游地区呈负相关; 8月份与华南、华北地区呈正相关、与长江中下游地区呈负相关. 这主要是由台风、夏季风和西北太平洋副热带高压共同影响的. 关键词: 台风影响 东部 夏季降水 贡献  相似文献   
10.
偏振被定义为光的振动方向对于传播方向的不对称性。偏振信息是遥感数据空间、辐射、光谱信息之外的又一重要信息。对于光学遥感数据来说,偏振信息是对光谱信息的又一种补充。偏振遥感在水体应用中具有巨大潜力,其中一个非常重要的应用就是校正天空光水面镜面反射,从而得到包含水中物质信息的离水辐射信号。太阳入射光会在水面发生反射或者与水体中颗粒物发生散射作用,使得离开水面被遥感器接收的信号具有很强的偏振特性。目前开展的水体偏振遥感实验要么面向室外自然光条件下的清洁海洋水体,要么面向室内人造光源条件下的模拟水体,鲜有面向自然光条件下的浑浊内陆水体。本文通过组合地物光谱仪和汤姆森偏振棱镜,实现了自然光条件下内陆水体水面原位偏振反射率光谱测量。利用获取的典型内陆水体水面多角度偏振反射率光谱,定量分析了多角度观测条件下水体偏振光谱特性,以及从水面偏振信号中消除天空光水面镜面反射从而得到离水辐射信号的效果。当观测方位角为135°、观测天顶角为53°时,采用偏振测量剥离水表天空反射光的剥离效率较好,推荐采用该观测几何进行水面偏振光谱观测。相比于传统的非偏振水面光谱测量方法,水面偏振光谱测量方法受气象条件变化影响小,能够更精确的提取离水辐射。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号