首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   10篇
  国内免费   1篇
晶体学   1篇
物理学   21篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
 报道了基于888 nm半导体抽运Nd∶YVO4晶体连续被动锁模的皮秒振荡器。通过热激发抽运方式改善激光器的热性能,提高锁模振荡器输出的平均功率与单脉冲能量。利用半导体可饱和吸收体(SESAM)实现激光器锁模运转的启动与维持。在抽运功率为60 W时,获得最大输出功率为15 W,重复频率为53 MHz的皮秒脉冲输出,光-光转换效率为24%。在输出功率为15 W时脉冲宽度为45 ps。  相似文献   
2.
精确的波前探测是反射镜面型检测及光束波前畸变测量的重要依据,论文根据Shark-Hartmann理论对波前探测技术进行了模拟和实验研究。将平行光经过球面透镜/柱面透镜后形成的球面波/柱面波作为探测波前。实验采用商用的微透镜阵列和CCD搭建Shark-Hartmann传感器,利用实际光束作为参考光,避免了参考光的不准直性对实验的影响。模拟计算结果表明平均曲率误差为13.423 mm,实验结果实现了对球面/柱面/倾斜波的探测及复原。  相似文献   
3.
In a certain amplification system, signal laser can be amplified from 1 nJ to 5 J. To realize a high quality imaging transfer, meet beam diameter expansion requirement, and get good filtering effects, three spatial filters are designed and assembled. Lenses in these spatial filters can be assembled and adjusted by their reflection spots to meet wave-front requirements. In this letter, we analyze precision of the assembling, and make a ray-tracing simulation to discuss the relation between assembling precision and lenses parameters. On the optimized distance of 1000 mm, adjusting precision of lens tilt can reach 5 mrad.  相似文献   
4.
We report on an all-solid-state high-power quasi-continuous blue light source by the frequency doubling of asignal wave from an optical parametric oscillator (OPO). A 50-mm-long LiB305 (LBO) crystal is used for theOPO, which is pumped by a diode-pumped Nd:YAG green laser (1OkHz, 50ns). Tunable blue emission in a newnonlinear crystal BiB306 (BiBO) is obtained with a wavelength range from 450 to 495 nm. The average power ofthe signal output is as high as 9.3 W from 924 to 970nm. The maximum output of the blue laser with the secondharmonic walk-off compensation is 1.3W average power at 470nm for 6.2W of OPO signal light at 940nm.  相似文献   
5.
张振  樊仲维  苏良碧 《人工晶体学报》2022,51(9-10):1560-1572
高功率固体激光技术的发展史就是一部与“废热”的斗争史,为抑制热效应对光束质量的不利影响,先后出现了热容激光器、薄片激光器、板条激光器以及光纤激光器,新的增益介质形态结合先进的散热技术将激光输出功率提升至百千瓦量级。固体激光增益介质的热学性能是限制激光功率进一步取得突破的重要瓶颈。因此,寻找具备超高热导率的激光晶体材料意义重大。本文介绍了上述四种激光器的基本原理及其在高功率激光方面取得的研究进展,从提高增益介质材料热导率的角度出发,对目前已有的方法和研究成果进行了分析与总结,对超热导激光晶体研究和高功率激光技术的发展进行了展望。  相似文献   
6.
介绍了一种激光二极管叠阵(LDA)侧面Zigzag泵浦多边形薄片激光放大器构型,采用三维光线追迹方法进行了详细的模拟仿真,优化设计了此放大器系统的泵浦耦合结构,主要研究了多边形增益介质的掺杂离子浓度与侧面切角对介质内部泵浦光分布的影响。在晶体厚度1.5 mm、端面口径16 mm的条件下,侧面切角在35°~65°,Nd3+掺杂浓度为0.20 at.%~0.30 at.%时,模拟仿真中Nd:YAG多边形薄片对泵浦光的吸收分布较均匀,泵浦光分布均匀性均优于0.1,同时在实验中得到了平顶的荧光分布和增益分布。介质内储能的均匀平顶分布有利于实现高功率高光束质量的激光输出,为侧面Zigzag泵浦多边形薄片激光器系统的设计与进一步实验提供了重要参考。  相似文献   
7.
10kHz腔倒空锁模皮秒激光器研究   总被引:2,自引:0,他引:2  
将半导体可饱和吸收体(SESAM)锁模技术与腔倒空技术结合,采用半导体端面抽运方式实现了具有高重复频率、大单脉冲能量的皮秒激光器的运转.从理论上分析了腔倒空锁模输出的机理,建立起腔倒空锁模激光器运行的物理图像,并对影响激光器倒空率的一些因素进行了研究.实验上,实现端面抽运Nd:YVO4晶体的SESAM连续锁模后,在锁模...  相似文献   
8.
根据脉冲单纵模激光器中的关键器件F-P标准具的选模原理,定量分析了不同参数F-P标准具的加工厚度精度、角度放置精度以及腔长变化对激光器纵模选择性能产生的影响,得到了对不同参数标准具的光学厚度偏差进行补偿所需的角度偏移量,研究了入射角度对标准具中心波长偏移的影响。这些结果对于脉冲单纵模激光器的机械结构设计、器件加工允差与装配调节精度的设计具有重要意义。在线型腔F-P标准具选模激光器中,得到了最大单脉冲能量8.41 J,脉冲宽度32 ns,近衍射极限的单纵模激光脉冲输出。  相似文献   
9.
受激布里渊散射(SBS)脉宽压缩是实现高峰值功率、短脉冲激光输出的重要途径之一,然而,目前SBS脉宽压缩仅限于1~10 Hz低重复频率激光器,限制了高重频短脉冲激光器在激光雷达、空间碎片探测以及目标成像等领域的应用。基于此,开展了高重复频率下的SBS脉宽压缩实验研究。设计搭建了高重复频率的主振荡放大激光器,开展了SBS二次级联脉宽压缩和SBS振荡放大双池脉宽压缩实验。通过SBS二次级联压缩实现了脉冲宽度从~32 ns压缩到~1.9 ns,脉宽压缩比达16倍;而通过SBS振荡放大双池结构实现了脉冲宽度从~4 ns压缩到376 ps,脉宽压缩比达10倍。实验结果表明,采用该超净封闭型SBS相位共轭镜,在Stokes光输出能量达50 m J时,无光学击穿现象,实现了在200 Hz高重复频率下的SBS脉宽压缩。  相似文献   
10.
Simulation and experimental results for high repetition rate all-normal dispersion Yb:fiber ring lasers are demonstrated for the cavity dispersion from 0.01 to 0.025 ps 2 .The simulation shows that the pulse spectrum has the potential to reach>30 nm for the dispersion of 0.014 ps 2 under practical pump power. This potential is proved by the experiment.Maximum spectral width of 30 nm is achieved at the repetition rate of 285 MHz under the 850-mW pump power.Average output power is 550 mW and dechirped pulse is 78 fs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号