首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
力学   7篇
物理学   4篇
  2023年   1篇
  2022年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
大型舰船受到水中兵器的巨大威胁,尤其是在水下接触爆炸情况下,船体结构将产生严重的局部毁伤,给舰船的战斗力乃至生命力带来严峻挑战。本文以大型舰船水下防护结构为研究对象,简要概述了各国海军大型舰船水下防护结构形式的发展历程,分析了水下接触爆炸下的毁伤载荷以及对舷侧多舱防护结构的毁伤机理,总结了基于具体结构和不同毁伤元的防护措施;并针对目前的研究现状,提出了有待进一步研究的问题。以期为舰船的水下防护设计提供参考,从而提高我国大型舰船的结构抗毁伤能力  相似文献   
2.
为提高蓄液结构的防护能力,开展蓄液结构弹道侵彻实验,通过改变其前、后面板厚度配比,研究前、后面板不同厚度匹配对蓄液结构破坏模式、压力载荷特性及防护能力的影响。结果表明:弹丸初速是影响入射波压力峰值大小的主要因素。固定前、后面板总厚度不变时,随着前、后面板厚度比的增大,前面板破坏模式由剪切冲塞-薄膜鼓胀-凹陷变形转变为剪切冲塞-薄膜鼓胀直至剪切冲塞破坏,后面板破坏模式由隆起-碟形破坏转变为薄膜鼓胀-花瓣开裂破坏。前、后面板破坏模式是相互影响的,前、后面板厚度匹配关系决定了其相应破坏模式的发生。前面板薄后面板厚的蓄液结构吸收冲击动能更多,抗侵彻能力也更强。  相似文献   
3.
为探索爆炸载荷下舱内夹芯复合结构的动态响应特性与防护效能,采用小尺度舱室结构模型实验,结合有限元数值分析,开展了不同爆炸距离下舱内双层泡沫铝夹芯结构的动响应特性和变形模式研究。分析了不同爆距下舱内爆炸载荷的作用过程和时空分布特性,讨论了在初始冲击波、初始冲击波叠加各壁面二次反射波和舱内爆炸准静态压力3种载荷下泡沫铝夹芯结构的变形模式。爆炸载荷下舱室壁板承受的载荷依次为初始冲击波、各壁面二次反射波和准静态气压。炸药在靠近舱室一端处起爆时,初始冲击波在近端壁的局部效应明显,在远端壁的作用范围更大,与舱室中心爆炸相比,其爆轰产物波动次数更少。泡沫铝夹芯结构的变形过程可分为泡沫芯层压缩、局部凸起变形和整体挠曲变形3个阶段,对应迎爆面板局部凸起叠加整体挠曲大变形、局部凸起叠加整体挠曲大变形和整体挠曲大变形3种变形模式。  相似文献   
4.
仲强  侯海量  朱锡  李典 《爆炸与冲击》2017,37(3):510-519
为研究陶瓷/液舱复合结构抗侵彻机理,在前期弹道冲击实验结果基础上,运用LS-DYNA进行了数值模拟,再现了陶瓷/液舱复合结构在弹体冲击下的破坏过程和破坏模式,得到与实验一致的结果。结果表明:弹体撞击结构后,结构内产生的冲击波以撞击处为圆心、以球形向前传播,并在结构内来回反射振荡;弹体在水中运动时,水中形成空泡且不断扩展,弹体头部水域形成高压区域;弹体发生墩粗和侵蚀破坏,在低速冲击下,弹体破坏主要发生在穿透陶瓷和前面板过程中,在高速冲击下,弹体破坏主要发生在水中运动阶段,最终形成类似“饼状”的严重变形;前、后面板发生局部破坏和整体变形,在高速弹体撞击下,后面板将发生花瓣开裂。  相似文献   
5.
吸油烟机内风道系统结构对吸油烟机气动性能有着十分重要的影响。本文首先采用计算流体力学软件FLUENT对吸油烟机气动性能进行数值模拟,将数值与实验测量结果进行对比,验证了数值计算模型和计算方法的有效性。然后针对吸油烟机箱体进风宽度比ε、蜗壳宽度B和蜗壳出口扩张率β,采用响应面法对吸油烟机性能进行优化。基于优化前后吸油烟机内部流动特性的CFD结果分析,揭示了吸油烟机箱体结构参数对其气动性能的影响,并对优化的吸油烟机风道系统的气动性能和噪声进行了实验测量。结果表明,通过参数优化,吸油烟机内流动状态得到改善,流动损失减小。优化的吸油烟机的全压在整个工况范围内都得到了不同程度的提升。当噪声基本保持不变时,吸油烟机最大风量增加了0.95 m~3/min。  相似文献   
6.
为探讨高速弹体侵彻下蓄液结构的防护方法,采用瞬态非线性有限元,研究了高速杆式弹体侵彻下蓄液结构承受的冲击载荷特性,分析了冲击载荷的作用过程、前后板承受的载荷强度及其弹体初速度和水域尺度的影响。结果表明:弹体在蓄液结构中的初始开坑作用,将形成入射冲击波,其压力峰值极高,但作用时间短,并将在液体内产生多次反射;弹体在液体中的侵彻,将产生空化,并形成峰值小、作用时间长的空化压力载荷;后板对液体流的阻碍作用将形成出口局部高压;入射冲击波和出口局部高压的强度随着弹体初速度的增加而增大,随着水域长度的增加而不断减小。根据所受冲击载荷特性的不同,将前、后板分别划分为3个不同的区域,并建立了每个分区的简化计算模型。  相似文献   
7.
基于均质钢板、聚脲涂层材料、SiC陶瓷材料设计了4种聚脲涂覆复合装甲结构,采用装药驱动预制破片试验方法开展了近炸下复合装甲结构毁伤特性实验研究,提出了各组分的毁伤破坏模式,对比分析了4种防护装甲结构的防护性能,探讨了复合装甲结构的防护机理。结果表明:作用于目标结构的破片动能远大于冲击波能,聚脲涂覆复合装甲结构的防护效能明显优于多层均质钢装甲,增加陶瓷厚度较增加背板、前面板厚度对提高整体防护效能更有效,破片撞击将引起陶瓷块大面积损伤,严重影响了其对后续着靶破片的防护性能。  相似文献   
8.
为改善当前战斗部近距爆炸下基于单纯抗爆或抗穿甲载荷开展防护结构设计的不足,本文中建立了战斗部近距爆炸下夹芯复合舱壁结构防护能力的理论评估模型,提出了联合作用下夹芯复合舱壁结构的防护能力需同时满足抗弹性能和整体变形破坏两方面要求。具体步骤为:首先计算战斗部爆炸后的联合毁伤载荷,然后基于抗弹理论模型评估夹芯复合舱壁结构的抗弹性能。若满足要求,则进一步根据联合作用理论模型校核夹芯复合舱壁结构在冲击波和破片群联合作用下是否满足整体变形破坏要求,判据为后面板是否产生撕裂、破口破坏。与有关实验结果进行了计算比较,结果吻合良好,证明了此理论评估模型的合理性。  相似文献   
9.
为探讨破片式战斗部空中爆炸下冲击波与破片的耦合作用机制,通过分析冲击波和破片在空气中的运动规律,在考虑壳体对冲击波强度的影响下,建立了冲击波与破片耦合作用区间的理论计算模型,并采用相关文献试验结果进行了对比。在此基础上,结合实例讨论了耦合作用区间随各影响因素的变化规律。结果表明,战斗部装填系数、装药爆速、壳体厚度以及能量分配对耦合作用区间的影响较大,而装药爆热、破片质量及破片形状对耦合作用区间的影响较小;随着装填系数、装药爆热和爆速、破片质量及冲击波能量与破片动能的比值的增大,耦合作用区间均减小;而随着壳体厚度和破片形状不规则度的提高,耦合作用区间增大。  相似文献   
10.
为探究部分充液多胞元结构的抗冲击防护性能,结合充液内凹胞元的落锤冲击试验,建立了充液内凹胞元、部分充液内凹多胞元结构的冲击动态特性二维FEM数值分析,计算得到了部分充液内凹多胞元结构的变形破坏模式,讨论了不同冲击速度下部分充液内凹多胞元结构的动力学响应特性。结果表明:在充液胞元破损后,水介质会流入相邻未充液胞元,形成二次鼓胀吸能效应,从而有效提高结构壁面的变形吸能水平;结构中的充液区域和未充液区域的变形破坏模式分别为鼓胀拉伸和屈曲弯折;随着冲击速度的提高,结构的单位体积应变能以及对初始冲击载荷的削弱作用均得到增强。横向充液方式可以等效为变刚度弹簧的串联布置,该方式仅影响结构的局部刚度,纵向充液方式可以等效为多层变刚度弹簧的并联布置,该方式会影响结构的整体刚度;充液区域与未充液区域的等效刚度呈动态变化,结构变形模式由各区域实时的等效刚度决定。当载荷冲击速度较高时,横向和纵向部分充液内凹多胞元结构对初始冲击载荷的削弱能力均优于未充液内凹多胞元结构。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号