首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
物理学   1篇
  2008年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
基于主成分分析和径向基网络的水稻胡麻斑病严重度估测   总被引:6,自引:0,他引:6  
对植被病害严重度的精确预测是采取植保措施的关键,同时对减少农药使用量也具有积极意义.该研究首先对叶片光谱反射数据进行重采样和求一阶、二阶微分,再用主成分分析PCA技术对上述变换光谱进行分析,最后结合径向基函数神经网络RBFN对水稻胡麻叶斑病严重度进行预测.将全部的光谱数据和病害严重度分为两组,75%用于网络训练,25%用作网络性能测试.文中对预测结果准确性有重要影响的径向基函数扩展速率和不同的数据处理方法进行了讨论,研究发现,一阶微分光谱经PCA压缩后,获得主分量光谱,输入RBN,病害严重度的预测均方根误差仅有7.73%.表明:主成分分析和径向基函数神经网络(PCA-RBFN)相结合,可以对水稻胡麻斑病严重度进行快速、精确的估算.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号