首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   1篇
力学   11篇
物理学   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1989年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
提高压电射流角速度传感器性能的途径   总被引:3,自引:0,他引:3  
报导了提高压电射流角速度传感器性能的途径.通过改进结构和工艺提高了压电射流角速度传感器的零位重复性、稳定性,减低了交叉耦合.实验结果表明零位重复性从原来的0.2(°)/S提高到0.1(°)/S,交叉耦合从原来的2%减小到1%.  相似文献   
2.
微机械陀螺测量旋转体自旋频率的机理分析   总被引:1,自引:1,他引:0  
阐明了所研制的微机械陀螺可用于检测旋转体的自旋频率.首先,根据微机械陀螺结构特点和工作原理得出陀螺输出信号的频率取决螺敏感轴和偏转方向之间夹角的变化,进而得到微机械陀螺输出信号频率与旋转体自旋频率之间的关系.其次,在旋转体处于恒值运动、角振动运动、圆周运动和椭圆运动等四种基本运动形式下,分别建立了陀螺测量旋转体自旋频率的数学模型,并采用加速度计输出为基准信号,推导出陀螺输出信号频率与旋转体自旋频率、运动形式、运动频率、运动方向之间的关系.最后,利用三轴转台模拟旋转体的四种运动形式,并将陀螺输出信号和加速计输出信号进行频谱分析.试验结果表明,理论分析与试验结果相吻合,该微机械陀螺可用于测量旋转体自旋频率.  相似文献   
3.
旋转载体驱动微机械陀螺是一种新型的振动式MEMS陀螺,它没有微机械陀螺通常所具有的驱动结构,而只有检测模态。它安装于旋转载体上,巧妙地利用了载体的自旋作为驱动,从而使得敏感质量获得角动量。当载体发生横向转动时,敏感质量将受到科里奥利力的作用。在进动力矩、弹性力矩和阻尼力矩的共同作用下,敏感质量将产生周期性振动。振动频率对应于载体自旋频率,振动幅度与载体输入角速度大小成比例。由此工作机理,得出了敏感元件的动力学方程,并基于动力学方程建立了陀螺标度因数的误差模型。接着,根据误差模型,对标度因数的稳定性进行了分析和实际测试。分析和实验数据说明,载体自旋频率的变化是造成标度因数不稳定的主要原因。为了保证陀螺测量精度,提出了一种抑制载体自旋频率变化对标度因数影响的补偿算法,提高标度因数稳定性。最后,针对该算法的有效性,进行了实验验证。实验结果表明,此种方法能有效地提高标度因数的稳定性,标度因数相对于自旋频率变化的影响因子由补偿前的1.31 m V/(°/s)/Hz下降至7.14×10-3 m V/(°/s)/Hz。  相似文献   
4.
1.静电场治疗装置的基本原理 (1)人和动物组织中存在电偶极子 人和动物的各种组织都是驻极体,即各种组织都是由定向排列的电偶极子构成.由于各种组织的驻极体电位不同,因此在静止伏态下动物和人体各部位之间存在电位差. 构成动物和人体各种组织的电偶极子有别于无机驻极体(压电体)的电偶极子.无机驻极体的电偶极子通常是无对称中心的有极分子,人和动物的骨胶原、腱、筋肉等的分子也是有极分子.但是,人体组织除存在固有的有极分子外,还存在受力时才显现出极性的有极性分子.例如合成多肽,静态时分子无电极性,受切变力作用时呈极性分子的模型.…  相似文献   
5.
为了弄清旋转体自旋角速度不稳定对陀螺稳定性的影响,根据硅微机械陀螺的运动方程,分别给出对高阻尼陀螺和低阻尼陀螺输出信号相对误差的数学模型,理论论证了硅微机械陀螺输出信号的误差主要是阻尼系数和旋转体自旋角速度不稳定造成的。实验结果给出,旋转体自旋角速度不稳定造成的输出电压比例系数误差达4.1%。理论论证和实验验证均表明,对低阻尼陀螺,自旋角速度不稳定对陀螺稳定性影响显著。  相似文献   
6.
"气体摆"式惯性器件的机理研究   总被引:10,自引:0,他引:10  
本文用能量分析的方法论述了气体摆式惯性器件的敏感机理,并与固体摆式惯性器件的原理作了类比分析。ABSTRACT__Thispaper__ThispaperdiscussedthegasflOwinertialsensor’ssensitivemechanismbyusingthepoweranalysismethodandcompareditwithsOlidmasssensor's。  相似文献   
7.
鉴于常规微机械陀螺的驱动结构和检测结构往往需要进行频率匹配,造成带宽较窄,工艺复杂的问题,设计了一种新的微机械陀螺,安装于旋转飞行器上,利用飞行器的旋转获得角动量,敏感飞行器的偏航和俯仰横向角速度。由于没有驱动结构,所以结构简单,带宽较宽。首先基于这种巧妙的结构建立了敏感元件的振动方程。根据振动方程,扭转梁是影响质量振动模态和模态频率的关键,同时考虑到应力、残余应力的释放以及工作能力,扭转梁设计成横截面积为矩形的弧形梁,并对其抗扭刚度进行了解析推导和计算,从而确定了敏感元件的固有频率。接着利用有限元分析的方法,对其振动模态进行了仿真,仿真结果表明,敏感元件的第一模态是扭转振动,固有频率相对于解析结果的误差为9.86%。为了进一步验证,设计了静电驱动电容检测的方法,实验测试得到的谐振频率和解析值的相对误差为5.21%。仿真和实验结果与理论计算一致,表明扭转梁的设计是合理的,模态分析是正确的,而且为动态性能评估和结构优化提供了理论依据。  相似文献   
8.
载体驱动硅微陀螺是一种利用体微工艺制备的新型电容式振动MEMS陀螺,它安装于旋转飞行器上,利用载体的自旋作为驱动。当载体发生横向转动时,敏感质量受到周期性科氏力的作用,产生振动,从而敏感输入角速度。针对该种MEMS陀螺,首先介绍了陀螺的工作原理和电容式检测结构,然后详细分析了差分电容与敏感质量偏转角之间的关系,最后提出了一种通过调节电容拾取电路的脉冲信号的占空比,来提高陀螺灵敏度的方法。实验测试结果表明,当占空比由50%调整到75%时,相应输出电压峰峰值可由10.7 V提高到13.1 V,提高幅度达22.43%。理论分析和实验结果均表明,该方法可简便有效地提高陀螺灵敏度,具有实际应用价值。  相似文献   
9.
介绍了一种安装在旋转体上,用于旋转体姿态控制的新型微机械陀螺.陀螺利用旋转载体的滚转获得角动量,当载体发生偏航或俯仰,敏感质量块受到周期性哥氏力的作用,从而敏感载体的偏航或俯仰角速度.飞行试验中舵机的舵偏打容易使陀螺发生共振,陀螺输出信号无法满足旋转载体姿态控制的要求.针对这一问题,需精确测量陀螺的固有频率.首先基于陀螺运动方程分析了其幅频特性和固有频率,并利用数值计算软件进行了仿真,最后提出了一种对该陀螺幅频特性的测量方法,得到了幅频特性曲线,确定了固有频率70 Hz.实际测量的幅频特性曲线和仿真曲线一致,测量的固有频率相对于舵偏打产生的共振频率点误差为2.1%,通过避开测得的70 Hz 固有频率,获得了符合姿态控制要求的陀螺输出信号.  相似文献   
10.
一种旋转载体用角速率传感器模型   总被引:6,自引:0,他引:6  
提出了一种利用旋转载体自身的旋转作为驱动,从而敏感旋转载体横滚或俯仰的角速率传感器模型,并运用陀螺力学理论建立传感器的动力学方程、求得解析解,对传感器进行动力学误差分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号