首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   12篇
化学   1篇
晶体学   1篇
物理学   11篇
  2022年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
本文合成了配合物[Cu(pcba)2·(phen)(H2O)] (pcba =对氯苯甲酸,phen = 1,10-邻菲罗啉),该配合物属于三斜晶系,P1空间群,晶胞参数为a=0.790 98(2) nm,b=1.072 40(4) nm,c=1.487 19(6) nm,α=100.613(3)°,β=95.239(3)°,γ=108.334(3)°,Z=2,Dc=1.638 g·cm-3,F(000)=582,最终结构残差因子R1=0.035 9,wR2=0.089 1。采用紫外及荧光研究了配合物和人血清蛋白(HSA)的相互作用方式。结果表明,配合物静态猝灭HSA荧光,可求得配合物与HSA的猝灭常数Ksv=2.35×105 L·mol-1,猝灭速率常数Kq=2.35×1013 L·mol-1·s-1,结合常数为Ka=2.14×1013 L·mol-1,结合位点n=2.37。同时,研究了配合物对胃癌细胞A549、宫颈癌细胞Hela和肝癌细胞HepG2的抗增殖能力。  相似文献   
2.
周澜  吕国华  陈维  庞华  张谷令  杨思泽 《中国物理 B》2011,20(6):65206-065206
Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water contact angle of polytetrafluoroethylene film drops from 114°to 46°and the surface free energy increases from 22.0 mJ/m2 to 59.1 mJ/m2. The optical emission spectrum indicates that there are reactive species such as O2+ , O and He in the plasma plume. After plasma treatment, a highly crosslinking structure is formed on the film surface and the oxygen element is incorporated into the film surface in the forms of -C-O-C-, -C=O, and -O-C=O groups. Over a period of 10 days, the contact angle of the treated film is recovered by only about 10 , which indicates that the plasma surface modification is stable with time.  相似文献   
3.
朱秋香  庞华  李发伸 《中国物理 B》2009,18(7):2953-2960
The magnetism,the magnetocrystalline anisotropy and the optical properties of the monolayer and atomic chain of 4d transition-metal Ru are investigated by using the full-potential linearized-augmented-plane-wave method in a generalized gradient approximation.The magnetic moments are 1.039 μ B /atom and 1.130 μ B /atom for the monolayer and atomic chain,respectively.Both systems have large magnetocrystalline anisotropy energy(MAE).The magnetic easy axis is normal to the monolayer and perpendicular to the chain axis in the atomic chain.The optical properties of the two low-dimensional Ru systems are investigated by calculating the complex optical conductivity tensor.Both systems exhibit anisotropy in photoconductivity,especially for the atomic chain.The physical origins of MAE and photoconductivity are studied based on electronic structures.It is found that the changes in crystal field caused by different symmetry-breaking mechanisms in the two low-dimensional Ru systems result in MAE through spin-orbit coupling,while the anisotropy in photoconductivity mainly comes from the crystallographic anisotropy.  相似文献   
4.
Mossbauer spectroscopy was used to probe the site-specific information of a K0.84Fe1.99Se2 superconductor. A spin excitation gap, △E≈5.5 meV, is observed by analyzing the temperature dependence of the hyperfine magnetic field (HMF) at the iron site within the spin wave theory. Using the simple model suggested in the literature, the temperature dependence of the HMF is well reproduced, suggesting that, below room temperature, the alkali metal intercalated iron selenide superconductors can be regarded as ferromagnetically coupled spin blocks that interact with each other antiferromagnetically to form the observed checkerboard-like magnetic structure.  相似文献   
5.
邓宁  庞华  吴畏 《中国物理 B》2014,(10):493-496
In this study the effects of doping atoms(Al, Cu, and N) with different electro-negativities and ionic radii on resistive switching of HfO2-based resistive random access memory(RRAM) are systematically investigated. The results show that forming voltages and set voltages of Al/Cu-doped devices are reduced. Among all devices, Cu-doped device shows the narrowest device-to-device distributions of set voltage and low resistance. The effects of different dopants on switching behavior are explained with deferent types of CFs formed in HfO2 depending on dopants: oxygen vacancy(Vo) filaments for Al-doped HfO2 devices, hybrid filaments composed of oxygen vacancies and Cu atoms for Cu-doped HfO2 devices,and nitrogen/oxygen vacancy filaments for N-doped HfO2 devices. The results suggest that a metal dopant with a larger electro-negativity than host metal atom offers the best comprehensive performance.  相似文献   
6.
<正>Plasma electrolytic oxidation(PEO) coatings are prepared on aluminium with graphite powders added into the electrolyte.The scanning electron microscopy(SEM) coupled with an energy dispersive x-ray analysis system(EDX) is used to characterize the surface and the cross-section morphologies of the coatings.The electrochemical impedance spectroscopy(EIS) is used not only to evaluate the corrosion resistance but also to analyse the structure of the coating. Results show that graphite powders are embedded in the PEO coating.The corrosion resistances of both the inner barrier and the outer porous layer are greatly improved,and the EIS could give some valuable detailed information about the coating structure.  相似文献   
7.
庞华  邓宁 《物理学报》2014,63(14):147301-147301
研究了Ni/HfO2(10 nm)/Pt存储单元的阻变特性和机理.该器件具有forming-free的性质,还表现出与以往HfO2(3 nm)基器件不同的复杂的非极性阻变特性,并且具有较大的存储窗口值(105).存储单元的低阻态阻值不随单元面积改变,符合导电细丝阻变机理的特征.采用X射线光电子能谱仪分析器件处于低阻态时的阻变层HfO2薄膜的化学组分以及元素的化学态,结果表明,Ni/HfO2/Pt阻变存储器件处于低阻态时的导电细丝是由金属Ni导电细丝和氧空位导电细丝共同形成的.  相似文献   
8.
Ceramic coatings are synthesized on AZ31 magnesium alloy in alkaline silicate solution by the method of plasma electrolytic oxidation. The effect of two different duty cycles (10% and 50%) on the structure and corrosive properties of the coatings is investigated. It is found that the coatings are mainly composed of MgO, Mg2SiO4 and MgF2 through XRD analysis. SEM images indicate that coatings formed at 50% duty cycle have a relatively coarse surface with larger pore size and fewer pores, and have a slower growth rate than those formed at 10% duty cycle with the same treatment time. However, the results of potentiodynamic polarization tests demonstrate that coatings formed at 50% duty cycle exhibit better corrosion resistance as a result of more compact microstructure.  相似文献   
9.
张莎  庞华  方阳  李发伸 《中国物理 B》2010,19(12):127102-127102
The electronic structures and magnetocrystalline anisotropy(MA) of ordered hexagonal close-packed(hcp) Co1-xNix alloys are studied using the full-potential linear-augmented-plane-wave(FLAPW) method with generalized gradient approximation(GGA).Great changes of magnetocrystalline anisotropy energy(MAE) are gained with different Ni compositions.Also,in-plane magnetocrystalline anisotropy is obtained for Co 15 Ni in which the Snoek’s limit is exceeded.It is found that the changes of the symmetry of the crystal field on Ni induce small variations in band structures around the Fermi level under different compositions,which plays an important role in modulating the magnetization direction,where the hybridization between Co-3d and Ni-3d orbits is of special importance in deciding the magnetocrystalline anisotropy of itinerant states.The rigid-band model is inapplicable to explain the evolution of magnetocrystalline anisotropy energy with Ni composition,and it is also inadequate to predict the magnetocrystalline anisotropy energy through the anisotropy of the orbital magnetic moment.  相似文献   
10.
The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped BeO at different doping levels are also calculated. A phenomenological band structure model based on p-d exchange-like p-p level repulsion between the dopants is proposed to explain the magnetic ground states in B-, C-, and N-doped BeO systems. The evolution from the antiferromagnetic phase to the ferromagnetic phase of C-doped BeO supercell with C concentration decreasing can also be well explained using this model. The findings in this study provide a simple guide for the design of band structure for a magnetic sp-electron semiconductor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号