首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  物理学   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
PLS-BP法近红外光谱定量分析研究   总被引:25,自引:7,他引:18  
建立BP模型用于近红外光谱定量分析时,为克服所建模型与训练样本集产生“过拟合”,先用线性算法为其压缩训练数据是必要的。目前多采用主成分法(PCA)和逐步回归法(SRA)。主成分法具有极强的压缩数据能力,用它压缩成的主成分输入BP网所建模型的预测精度一般能满足要求,但它处理数据时未考虑输出变量的影响。逐步回归法根据系统输出选择变量,但所选变量具有自相关性,而且与训练集样品的排列顺序有关,很难选出最好的变量,往往难满足预测精度要求。本研究用偏最小二乘法(PLS),根据输出变量将原始数据压缩为主成分,输入BP网并用所建模型预测30个小麦样品的蛋白质含量。结果表明,与PCA-BP模型的预测决定系数(R2)从92.50提高到97.10,训练迭代次数从12 000减少到4 500。  相似文献
2.
特征根回归法近红外光谱定量分析研究   总被引:2,自引:0,他引:2  
本文以大豆样品为实验材料,研究了特征根回归法近红外光谱定量分析。用40个大豆样品的近红外光谱数据建立了测定大豆蛋白质含量的特征根回归模型,预测另外32个大豆样品的蛋白质含量,结果同PLS回归方法进行了比较,表明特征根回归模型可用于生物样品的近红外光谱定量分析。特征根回归法是对PCR建模方法改进的又一种化学计量学定量分析校正方法,该方法在对样品光谱提取主成份时考虑了待分析组分的作用,因此所建立的定量分析模型有好的分析效果。研究结果进一步表明,以样品近红外光谱建立定量分析模型,提取主成份时充分考虑被定量分析成份的作用是完全必要的。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号