首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   3篇
  物理学   3篇
  2014年   2篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
The high power GaN-based blue light emitting diode(LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition(MOCVD), hydride vapor-phase epitaxial(HVPE), and laser lift-off(LLO). Its advantages are demonstrated from material quality and chip processing. It is investigated by high resolution X-ray diffraction(XRD), high resolution transmission electron microscope(HRTEM), Rutherford back-scattering(RBS), photoluminescence, current-voltage and light output-current measurements. The width of(0002) reflection in XRD rocking curve, which reaches 173 for the thick GaN template LED, is less than that for the conventional one, which reaches 258. The HRTEM images show that the multiple quantum wells(MQWs) in 80-μmthick GaN template LED have a generally higher crystal quality. The light output at 350 mA from the thick GaN template LED is doubled compared to traditional LEDs and the forward bias is also substantially reduced. The high performance of 80-μm-thick GaN template LED depends on the high crystal quality. However, although the intensity of MQWs emission in PL spectra is doubled, both the wavelength and the width of the emission from thick GaN template LED are increased. This is due to the strain relaxation on the surface of 80-μm-thick GaN template, which changes the strain in InGaN QWs and leads to InGaN phase separation.  相似文献
2.
The high power GaN-based blue light emitting diode (LED) on an 80%tm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition (MOCVD), hydride vapor-phase epi- taxial (HVPE), and laser lift-off (LLO). Its advantages are demonstrated from material quality and chip processing. It is investigated by high resolution X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), Rutherford back-scattering (RBS), photoluminescence, current-voltage and light output-current measurements. The width of (0002) reflection in XRD rocking curve, which reaches 173" for the thick GaN template LED, is less than that for the conventional one, which reaches 258". The HRTEM images show that the multiple quantum wells (MQWs) in 80%tm- thick GaN template LED have a generally higher crystal quality. The light output at 350 mA from the thick GaN template LED is doubled compared to traditional LEDs and the forward bias is also substantially reduced. The high performance of 80-~m-thick GaN template LED depends on the high crystal quality. However, although the intensity of MQWs emission in PL spectra is doubled, both the wavelength and the width of the emission from thick GaN template LED are increased. This is due to the strain relaxation on the surface of 80%tin-thick GaN template, which changes the strain in InGaN QWs and leads to InGaN phase separation.  相似文献
3.
Two strain-state samples of GaN, labelled the strain-relief sample and the quality-improved sample, were grown by hydride vapour phase epitaxy (HVPE), and then characterized by high-resolution X-ray diffraction, photoluminescence and optical microscopy. Two strain states of GaN in HVPE, like 3D and 2D growth modes in metal-organic chemical vapour deposition (MOCVD), provide an effective way to solve the heteroepitaxial problems of both strain relief and quality improvement. The gradual variation method (GVM), developed based on the two strain states, is characterized by growth parameters' gradual variation alternating between the strain-relief growth conditions and the quality-improved growth conditions. In GVM, the introduction of the strain-relief amplitude, which is defined by the range from the quality-improved growth conditions to the strain-relief growth conditions, makes the strain-relief control concise and effective. The 300-μm thick bright and crack-free GaN film grown on a two-inch sapphire proves the effectiveness of GVM.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号