首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  物理学   18篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别.主成分分析表明,主成缮分1和主成分2的累积可信度已达98%,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类苹果具有很好的聚类作用.利用主成分分析得到的载荷图可以得到对于苹果品种敏感的特征波段,用特征波段图谱作为神经网络的输入建立三层BP人工神经网络模型.每个品种各25个苹果共75个用来建立神经网络模型,余下的共15个用于预测.对未知的15个样本进行预测,品种识别准确率达到100%.说明文章提出的方法具有很好的分类和鉴别作用,为苹果的品种鉴别提供了一种新方法.  相似文献
2.
提出了一种基于独立组分分析的可见/近红外光谱透射技术快速鉴别蜂蜜品牌的新方法。用独立组分分析方法获取蜂蜜的可见/近红外光谱载荷图,将载荷图中相关性最大的波段,作为人工神经网络的输入建立蜂蜜品牌的鉴别模型。建立了一个三层的BP神经网络模型,各层传递函数采用S型(Sigmoid)函数,并设置网络输入层节点数为9,隐含层节点数为10,输出层节点数为3。每个品牌25个样本,3个品牌共75个样本,用来建立BP神经网络模型,剩余的3个品牌各5个样本用于预测,鉴别准确率达100%,模型的拟合残差为8·245365×10-5。说明基于独立组分分析的方法具有很好的鉴别效果,为蜂蜜的品牌鉴别提供了一种新方法。  相似文献
3.
基于光谱技术的桔子汁品种鉴别方法的研究   总被引:5,自引:5,他引:0  
为了实现桔子汁不同品种的快速光谱鉴别,首先采用主成分分析法对光谱数据进行聚类分析,从定性分析的角度得到四种不同品种桔子汁的特征差异.同时将小波变换用于对大量光谱数据的压缩,并结合RBF神经网络建立桔子汁品种鉴别的定量分析模型.该模型将小波压缩后的数据作为神经网络的输入向量,建立径向基函数RBF神经网络.4个品种共240个样本用来建立RBF神经网络的训练模型,剩余的60个样本用于预测.预测结果表明,小波变换结合RBF神经网络的桔子汁品种鉴别的准确率达到100%.说明文章提出的基于光谱技术的鉴别方法具有很好的分类能力,它为桔子汁品种的快速鉴别提供了一种新方法.  相似文献
4.
基于可见-近红外光谱的咖啡品牌鉴别研究   总被引:5,自引:4,他引:1  
利用可见-近红外光谱技术对市场上三种不同品牌咖啡品种进行鉴别.分别采用主成分分析法与BP神经网络结合和小波变换与BP神经网络结合两种组合模型进行分析预测.利用主成分分析法与小波变换的数据压缩功能和BP神经网络的学习预测能力实现对不同品牌咖啡的鉴别.实验采用3个品种共60个样本建立模型,30个样本进行品种鉴别,结果表明,两种鉴别模型的咖啡品种鉴别率均为100%.同时也表明,小波变换用于数据压缩无论是在压缩时间上还是在压缩能力上都优于主成分分析法.说明通过小波变换和BP神经网络相结合建立模型进行不同品牌咖啡鉴别具有分析速度快,鉴别能力强的特点,为快速鉴别纯品咖啡提供了新的方法,同时也为确定不同品牌咖啡选用咖啡豆品种奠定了基础.  相似文献
5.
基于高光谱成像技术的多宝鱼肉冷藏时间的可视化研究   总被引:2,自引:0,他引:2  
提出了一种应用可见-近红外高光谱成像技术快速无损检测多宝鱼肉冷藏时间并实现其可视化的新方法。采集8种不同冷藏时间的共160个鱼肉样本的高光谱图像,并提取样本感兴趣区域(ROI)的平均光谱。取120个建模集样本的光谱数据与其相应的冷藏时间建立偏最小二乘回归(PLSR)模型,对40个预测集样本的冷藏时间进行预测,预测决定系数(R2)为0.966 2,预测均方根误差(RMSEP)为0.679 9d,获得了满意的预测精度。最后,用所建模型对预测集图像上每个像素点的冷藏时间加以预测,采用IDL图像编程技术将不同的时间用不同的颜色表示,最终以伪彩图的形式实现多宝鱼肉冷藏时间的可视化。结果表明,高光谱成像技术与化学计量学结合可以准确预测鱼肉的冷藏时间,与图像处理方法结合可以实现预测时间的可视化,能形象、直观地展示出鱼肉的新鲜度状态和分布情况,为实现水产品加工的自动化奠定了基础。  相似文献
6.
提出了基于连续投影算法(successive projections algorithm,SPA)、载荷系数法(x-loading weights,x-LW)和格拉姆-施密特正交(gram-schmidt orthogonalization,GSO)提取特征波长的高光谱成像技术检测番茄叶片早疫病的方法。首先获取380~1 023nm波段范围内70个健康和70个染病番茄叶片的高光谱图像信息,然后提取健康和染病叶片感兴趣区域(region of interest,ROI)的光谱反射率值,建立番茄叶片早疫病的最小二乘-支持向量机(least squares-support vector machine,LS-SVM)鉴别模型,建模集和预测集的鉴别率都是100%。再通过SPA、x-LW和GSO提取特征波长(effective wavelengths,EW),并建立EW-LS-SVM和特征波长-线性判别分析(ew-linear discriminant analysis,EW-LDA)鉴别模型。结果显示,每个模型的鉴别效果都很好,EW-LS-SVM模型中预测集的鉴别率都达到了100%,EW-LDA模型中预测集的鉴别率分别是100%,100%和97.83%。基于SPA,x-LW和GSO所建模型的输入变量分别是4个(492,550,633和680nm),3个(631,719和747nm)和2个(533和657nm),较少的特征波长便于实时检测仪器的开发。结果表明,高光谱成像技术检测番茄叶片早疫病是可行的,SPA,x-LW和GSO都是非常有效的特征波长提取方法。  相似文献
7.
基于光谱技术和连续投影算法的润滑油品牌快速鉴别研究   总被引:1,自引:0,他引:1  
为了实现润滑油品牌的快速无损检测,提出了一种基于可见/近红外光谱透射技术与连续投影算法相结合的润滑油品牌快速鉴别新方法。采用连续投影算法对6种润滑油的可见/近红外光谱数据进行波长变量的筛选,再结合偏最小二乘法建立润滑油品牌的鉴别模型。结果表明,鉴别模型的相关系数r为0.9721,预测均方根误差RMSEP为0.4055,鉴别正确率为91.7%。说明提出的连续投影算法结合偏最小二乘算法具有很好的预测效果。  相似文献
8.
基于光谱技术鉴别机油品种的新方法   总被引:1,自引:0,他引:1  
提出了一种用可见-近红外透射光谱技术快速鉴别机油品种的新方法,应用可见-近红外光谱仪测定三种机油的光谱曲线,然后用主成分分析法对不同品种的机油样本进行聚类分析,并获取机油可见-近红外光谱的特征信息,再结合多类判别分析技术建立机油占占种鉴别的模型.对经过预处理的光谱数据进行主成分分析.结果表明,以样本在第一主成分和第二主成分卜的得分做出的二维散点图,对不同种类机油具有很好的聚类,能定性区分不同种类机油;经过主成分分析得到的前8个主成分的累积可信度已达95.38%,说明这8个变量能够代表绝大部分原始光谱的信息.从180个样本中随机抽取150个样本用于建立多类判别分析品种鉴别模型,余下的30个样本用于验证.对未知的30个样本进行品种预测,准确率为100%.证明本方法具有明显的分类和鉴别作用,为不同品种的机油鉴别提供了一种新方法.  相似文献
9.
应用近红外高光谱成像技术实现三文鱼肉水分含量的快速无损检测。采集来自不同部位的三文鱼肉共90个样本的高光谱图像, 提取样本感兴趣区域(ROI)的平均光谱。随机取60个样本作为建模集, 其余30个样本作为预测集。分别采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)对全波段和水分含量建立相关性模型, 并对预测集样本的水分含量进行预测。再用一种新的变量提取方法random frog选择特征波长, 并基于特征波长分别建立水分检测的PLSR和LS-SVM模型。特征波长模型的预测精度虽然稍逊于全波段模型, 但是仅用12个变量代替了全波段的151个变量, 大大简化了模型, 更便于实际应用。PLSR和LS-SVM特征波长模型的预测相关系数(Rp)分别为0.92和0.93, 预测均方根误差(RMSEP)分别为1.31%和1.18%, 取得了满意的结果。研究表明, 近红外高光谱成像与化学计量学方法结合可以准确预测三文鱼肉的水分含量, 为鱼肉品质的快速监测提供重要的参考。  相似文献
10.
应用近红外高光谱成像技术实现三文鱼肉水分含量的快速无损检测。采集来自不同部位的三文鱼肉共90个样本的高光谱图像, 提取样本感兴趣区域(ROI)的平均光谱。随机取60个样本作为建模集, 其余30个样本作为预测集。分别采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)对全波段和水分含量建立相关性模型, 并对预测集样本的水分含量进行预测。再用一种新的变量提取方法random frog选择特征波长, 并基于特征波长分别建立水分检测的PLSR和LS-SVM模型。特征波长模型的预测精度虽然稍逊于全波段模型, 但是仅用12个变量代替了全波段的151个变量, 大大简化了模型, 更便于实际应用。PLSR和LS-SVM特征波长模型的预测相关系数(Rp)分别为0.92和0.93, 预测均方根误差(RMSEP)分别为1.31%和1.18%, 取得了满意的结果。研究表明, 近红外高光谱成像与化学计量学方法结合可以准确预测三文鱼肉的水分含量, 为鱼肉品质的快速监测提供重要的参考。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号