首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  完全免费   3篇
  物理学   36篇
  2019年   1篇
  2018年   5篇
  2017年   12篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
水果坚实度的近红外光谱检测分析试验研究   总被引:24,自引:10,他引:14  
应用傅里叶漫反射近红外光谱技术探讨了水果坚实度无损检测的方法.利用偏最小二乘法建立了坚实度与漫反射光谱的无损检测数学模型,同时对不同光谱预处理方法和不同建模波段范围对模型的预测性能进行了对比分析.结果表明:利用傅里叶变换光谱仪采集的原始光谱的平滑预处理对结果并没有太大影响;原始光谱在800~2 500 nm范围的模型得到了最好的预测结果:校正集样本的相关系数r为0.869,校正均方根误差RMSEC为3.88 N;预测集样本的相关系数r为0.840,预测均方根误差RMSEP为4.26 N.通过本研究得出:应用近红外漫反射光谱检测水果坚实度是可行的,为今后快速无损评价水果成熟度提供了理论依据.  相似文献
2.
基于小波变换的水果糖度近红外光谱检测研究   总被引:19,自引:7,他引:12  
利用小波变换滤波技术对90个水果样品的近红外光谱信号进行了去噪处理,并结合滤波后重构光谱信号对水果糖度进行逐步线性回归(SMLR)建立其校正模型,通过34个样品的外部检验对校正模型精度进行评价.研究结果表明:校正模型的预测精度在小波尺度为3时其预测精度最好,预测集的决定系数由原来的0.84提高到0.85,预测集相对标准误差由原来的6.1%降为6.0%.因此,使用小波去噪方法有消除原始光谱噪声作用,从而使最终的SMLR模型更具有代表性和稳健性,也提高了品质检测时模型预测精度.  相似文献
3.
近红外漫反射用于检测苹果糖度及有效酸度的研究   总被引:19,自引:11,他引:8  
提出了应用近红外漫反射光谱技术并结合光纤传感技术快速检测苹果糖度和有效酸度的新方法。以傅里叶变换光谱仪(12500-4000cm^-1)为试验仪器,以120个红富士苹果为标准样品并结合偏最小二乘法,建立了苹果糖度、有效酸度的定量预测数学模型。试验结果为:样品预测值和真实值之间的相关系数分别为0.970,0.906,标准校正误差(SEC)分别为0.261,0.0562,标准预测误差(SEP)分别为0.272,0.0562.偏差(Bias)分别为0.011,0.0115。通过本研究表明:应用近红外光谱漫反射技术在10341~5461cm^-1光谱波长范围内对苹果糖度的无损检测和在10341-3818cm^-1有效光谱范围内对有效酸度的无损检测具有可行性。  相似文献
4.
傅里叶近红外光谱的雪青梨酸度偏最小二乘法定量分析   总被引:12,自引:5,他引:7  
利用近红外漫反射光谱测定法获取了完整雪青梨的近红外光谱(12 500~4 000 cm-1),采用多元校正算法偏最小二乘法(PLS)方法,选取不同的波段范围对漫反射光谱进行有效信息提取和分析,得出了不同因子数时PLS方法进行酸度分析的结果及其因子数与交互有效检验标准偏差(RMSECV)关系,确定了最佳回归的因子数和用于定量分析的最佳波段范围.实验结果表明:校正模型的预测精度在5 452~12 285 cm-1波段范围内,最佳主因子数为7时,雪青梨总酸的预测精度最好,其预测集的相关系数达到了0.79,预测标准偏差为0.018 6.  相似文献
5.
可见/近红外光谱法无损检测赣南脐橙可溶性固形物   总被引:12,自引:4,他引:8  
应用可见/近红外光谱法对赣南脐橙可溶性固形物进行了无损检测研究。通过主成分分析,获取光谱的有效信息,将其作为人工神经网络的输入变量进行非线性建模。90个建模样品训练结果是,样品参考值与预测值之间的相关系数为0.9147,训练均方差为0.5203;38个未知样品预测结果是:样品参考值与预测值之间的相关系数为0.9033,预测均方差为0.6964,相对预测偏差4.5709%。实验结果表明基于人工神经网络的可见/近红外光谱法无损检测赣南脐橙可溶性固形物是可行的。  相似文献
6.
可见光光谱检测赣南脐橙糖度的研究   总被引:8,自引:1,他引:7  
利用透射光谱测定法获取赣南脐橙的可见光光谱(400~800 nm),采用多种校正算法,选取不同的波段范围对透射光谱进行有效信息提取和分析,对比研究了不同因子数时不同校正方法进行糖度快速检测的影响,确定了最佳参比、最佳的波段范围、最佳光谱处理方法和用于快速检测分析的最佳校正方法.实验结果表明:偏最小二乘法校正模型的预测精度在450~770 nm波段范围内,因子数为7时其糖度的预测精度最好,其预测集的相关系数达到了0.857,预测标准偏差为0.562.  相似文献
7.
用傅里叶变换近红外(FTNIR)光谱透射方式对新鲜苹果汁溶性固形物含量(SSC)进行了快速定量分析.实验共测定了60个果汁样品的SSC,并采集了样品的近红外光谱数据.42个样品用来建模,剩下的18个用来验证模型的性能.对实验室测得的SSC与FTNIR光谱数据进行相关性分析,以TQ 6.2.1定量分析软件中集成的主成分回归法(PCR)和偏最小二乘回归法(PLS)建立了检测模型.该研究对比了不同光谱范围内建立的检测模型的性能.根据预测平方根误差(RMSEP)和相关系数(r2)进行不同模型的预测性能,最好的新鲜苹果汁SSC预测模型的RMSEP=0.603°Brix,r2=0.997.结果表明FT-NIR可以作为一种可靠、准确、快速的无损检测方法来评价新鲜果汁的可溶性固形物含量.  相似文献
8.
近红外漫反射光谱检测赣南脐橙可溶性固形物的研究   总被引:4,自引:1,他引:3  
研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法.以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型.实验结果为:在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791.实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性.  相似文献
9.
基于高光谱的GA和SPA算法对赣南脐橙叶绿素定量分析   总被引:2,自引:0,他引:2  
用遗传算法(GA)和连续投影算法(SPA)分别提取了赣南脐橙叶片高光谱图像的有效信息,对叶绿素的含量用偏最小二乘法(PLS)进行建模定量分析。高光谱图像标定后,提取感兴趣区域(ROI)的平均光谱,用GA和SPA算法分别选出了27和8条特征波长,然后用PLS对叶绿素含量建模。GA-PLS与SPA-PLS模型得到的预测集相关系数分别为0.80和0.83,均方根误差分别为2.45和2.30。结果表明:SPA-PLS模型具有较高的优势,可以结合高光谱技术对赣南脐橙叶绿素含量快速、无损的定量分析。  相似文献
10.
近红外漫反射光谱检测梨内部指标可溶性固性物的研究   总被引:2,自引:0,他引:2  
旨在建立近红外漫反射光谱与梨水果内部可溶性固形物之间的关系,以评价近红外漫反射光谱在测量梨水果内部指标可溶性固形物的应用价值。应用近红外光谱(350~1800nm),采用多元线性回归(MLR)、主成分回归(PCR)和偏最小二乘法(PLS)三种不同的数学校正方法对梨水果的可溶性固形物(SSC)进行了定量分析,并且对梨水果不同位置的吸光度原始光谱,一阶微分和二阶微分三种不同预处理情况下的模型进行了最优化分析。在梨水果赤道部位预测结果较为理想,采用一阶微分预处理方法下应用PLS方法。研究结果为预测集的相关系数为0.8517,预测样本均方根误差为0.8793。研究表明,近红外漫反射光谱可以作为一种准确、可靠和无损的检测方法用于评价梨水果内部指标可溶性固形物。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号