首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  物理学   17篇
  2016年   1篇
  2014年   1篇
  2008年   2篇
  2007年   9篇
  2006年   3篇
  2005年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
水果坚实度的近红外光谱检测分析试验研究   总被引:24,自引:10,他引:14  
应用傅里叶漫反射近红外光谱技术探讨了水果坚实度无损检测的方法.利用偏最小二乘法建立了坚实度与漫反射光谱的无损检测数学模型,同时对不同光谱预处理方法和不同建模波段范围对模型的预测性能进行了对比分析.结果表明:利用傅里叶变换光谱仪采集的原始光谱的平滑预处理对结果并没有太大影响;原始光谱在800~2 500 nm范围的模型得到了最好的预测结果:校正集样本的相关系数r为0.869,校正均方根误差RMSEC为3.88 N;预测集样本的相关系数r为0.840,预测均方根误差RMSEP为4.26 N.通过本研究得出:应用近红外漫反射光谱检测水果坚实度是可行的,为今后快速无损评价水果成熟度提供了理论依据.  相似文献
2.
基于小波变换的水果糖度近红外光谱检测研究   总被引:19,自引:7,他引:12  
利用小波变换滤波技术对90个水果样品的近红外光谱信号进行了去噪处理,并结合滤波后重构光谱信号对水果糖度进行逐步线性回归(SMLR)建立其校正模型,通过34个样品的外部检验对校正模型精度进行评价.研究结果表明:校正模型的预测精度在小波尺度为3时其预测精度最好,预测集的决定系数由原来的0.84提高到0.85,预测集相对标准误差由原来的6.1%降为6.0%.因此,使用小波去噪方法有消除原始光谱噪声作用,从而使最终的SMLR模型更具有代表性和稳健性,也提高了品质检测时模型预测精度.  相似文献
3.
近红外漫反射用于检测苹果糖度及有效酸度的研究   总被引:19,自引:11,他引:8  
提出了应用近红外漫反射光谱技术并结合光纤传感技术快速检测苹果糖度和有效酸度的新方法。以傅里叶变换光谱仪(12500-4000cm^-1)为试验仪器,以120个红富士苹果为标准样品并结合偏最小二乘法,建立了苹果糖度、有效酸度的定量预测数学模型。试验结果为:样品预测值和真实值之间的相关系数分别为0.970,0.906,标准校正误差(SEC)分别为0.261,0.0562,标准预测误差(SEP)分别为0.272,0.0562.偏差(Bias)分别为0.011,0.0115。通过本研究表明:应用近红外光谱漫反射技术在10341~5461cm^-1光谱波长范围内对苹果糖度的无损检测和在10341-3818cm^-1有效光谱范围内对有效酸度的无损检测具有可行性。  相似文献
4.
大白桃糖度的近红外漫反射光谱无损检测试验研究   总被引:13,自引:4,他引:9  
该研究应用近红外(near infrare,NIR)漫反射光谱定量分析技术开展了金华大白桃的糖度检测试验研究.用偏最小二乘回归(partial least square regression,PLSR)方法在800~2 500 nm光谱范围建模,通过比较果汁和不同部位果肉所对应的相关模型的预测结果发现:用水果3个部位(顶部、中部、底部)共9个检测点的果肉平均光谱和糖度平均值建立的模型的结果比果汁或单独某个部位果肉(3个检测点)所建立的模型的结果要好.在此基础上,分析了光谱微分和散射校正预处理对建模结果的影响,结果显示微分光谱建立的模型不如原始光谱建立的模型的结果好,光谱的散射校正处理(用多元散射校正MSC和标准正态变量变换SNV两种方法)有助于提高模型的预测性能.最终建立桃子果肉平均光谱经MSC和SNV散射校正后与糖度的相关模型,MSC和SNV对建模结果的影响基本一致,MSC-PLSR和SNV-PLSR模型的相关系数Rcal和交互验证相关系数Rcross-v分别为0.997和0.939.该研究表明近红外光谱检测技术可用于金华大白桃糖度的定量分析.  相似文献
5.
近红外透射光谱应用于黄酒酒龄的定性分析   总被引:8,自引:5,他引:3  
应用近红外光谱透射技术,结合化学计量学方法,开展了黄酒酒龄定性鉴别的研究,并对不同光谱预处理方法(未处理、平滑、二阶微分)对酒龄鉴别结果的影响进行了对比分析.试验采用傅里叶变换近红外光谱仪,以86瓶绍兴黄酒为标准样品,并结合不同光谱预处理方法及判别分析法,建立了黄酒酒龄定性鉴别模型.光谱平滑处理对酒龄鉴别结果影响不显著,而微分光谱分析结果最差,近红外原始光谱结合判别分析法的分析结果最优,其校正集正确分类的百分比达98.1%,预测集达90.6%.研究表明,近红外光谱透射技术结合原始光谱及判别分析法可作为一种可靠、准确、快速的检测方法用于黄酒酒龄定性鉴别分析.  相似文献
6.
应用近红外漫反射光谱定量分析技术对两个产地三个品种枇杷的可溶性固形物进行无损检测试验研究.通过分析,发现在波长1 400~1 500 nm和1 900~2 000 nm两段范围,样品的可溶性固形物与光谱吸光度之间的相关系数较高;用偏最小二乘回归PLSR、逐步多元线性回归SMLR和主成分回归PCR三种方法分别建立这两个波段和全波段范围的模型,全波段的PLSR模型的效果较优.研究发现一阶和二阶微分光谱建立的模型均不如原始光谱建立的模型效果好.最终建立三个品种枇杷样品的原始光谱在全波段范围经17点平滑后的PLSR模型,模型的校正集和预测集的相关系数分别为0.96和0.95.研究表明近红外光谱检测技术可用于枇杷可溶性固形物含量的定量分析.  相似文献
7.
用傅里叶变换近红外(FTNIR)光谱透射方式对新鲜苹果汁溶性固形物含量(SSC)进行了快速定量分析.实验共测定了60个果汁样品的SSC,并采集了样品的近红外光谱数据.42个样品用来建模,剩下的18个用来验证模型的性能.对实验室测得的SSC与FTNIR光谱数据进行相关性分析,以TQ 6.2.1定量分析软件中集成的主成分回归法(PCR)和偏最小二乘回归法(PLS)建立了检测模型.该研究对比了不同光谱范围内建立的检测模型的性能.根据预测平方根误差(RMSEP)和相关系数(r2)进行不同模型的预测性能,最好的新鲜苹果汁SSC预测模型的RMSEP=0.603°Brix,r2=0.997.结果表明FT-NIR可以作为一种可靠、准确、快速的无损检测方法来评价新鲜果汁的可溶性固形物含量.  相似文献
8.
蔬菜的无损检测技术包括利用其电学特性、光学特性、声波振动特性以及核磁共振技术、机器视觉技术、电子鼻技术和撞击技术等,其中应用最广泛、最成功的检测方法是光学方法.近红外光谱分析技术因分析速度快、效率高、成本低、重现性好,无需样品备制,无污染等特点,已成为一种快速、无损的现代分析技术,在很多领域得到广泛应用.文章介绍了国内外运用近红外光谱分析技术进行蔬菜品质无损检测的研究情况,分析了该技术应用于蔬菜品质检测时尚存在的问题和今后的研究方向.提出因蔬菜多样性和易腐变性等特点,需要加快研制近红外自动分析设备,以提高蔬菜品质检测的速度.指出结合核磁共振技术、图像技术等进行蔬菜品质的无损检测是未来发展的趋势.  相似文献
9.
应用多种近红外建模方法分析梨的坚实度   总被引:4,自引:2,他引:2  
近红外光谱(near infrared spectroscopy,NIRS)技术是一种快速、无损的仪器分析方法,在农产品品质检测方面引起了广泛的关注,在近红外光谱信息和品质指标之间建立一个稳健的模型是近红外光谱分析中十分重要且有一定难度的过程,常见的多元校正方法有偏最小二乘回归(PLSR)、主成分回归(PCR)和逐步多元线性回归(SMLR)等,该研究中除了常用的线性方法外,还采用了一种结合非线性方法的组合算法[结合了SMLR和径向基神经网络(RBFN)]用于梨坚实度的近红外光谱检测.比较常用的线性建模方法,原始光谱的PLSR模型的得到了较好的结果;校正集相关系数r=0.87,校正均方根误差RMSEC=3.88 N,预测集r=0.84,预测均方根误差RMSEP=4.26 N;组合算法的建模结果比SMLR和PCR的结果好,但比PLSR的结果稍差:校正集r=0.85,RMSEC=4.15 N,预测集r=0.82,RMSEP=4.67 N.结果表明:NIRS可用于梨的坚实度检测,但是建模方法的选择值得进一步研究以提高预测的精度.  相似文献
10.
可见/近红外光谱漫透射技术检测西瓜坚实度的研究   总被引:4,自引:3,他引:1  
西瓜是一种广受世界各国消费者喜爱的水果,坚实度是西瓜的一个重要品质指标,文章利用可见/近红外漫透射光谱技术进行了西瓜坚实度(FM)的无损检测研究.采用偏最小二乘法(PLS)和主成分回归法(PCR)建立了FM与漫透射光谱的无损检测数学模型,对比分析了不同光谱预处理方法(原始光谱%T,一阶微分处理光谱D1(%T),二阶微分处理光谱D2(%T)以及光谱的Savitsk-Golay法滤波)对模型预测性能的影响.根据模型相关系数(r)及预测平方根标准偏差(RMSEP)进行了不同模型的预测性能对比,结果表明:光谱经二阶微分处理并使用Savitsky-Golay法滤波后,采用PLS法可以得到最好的FM建模结果(r=0.974,RMSEP=0.589 N).研究表明:应用可见/近红外漫透射光谱技术检测西瓜的坚实度是可行的,为今后快速无损评价大果形厚果皮类水果坚实度提供了理论依据.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号