首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   3篇
  国内免费   10篇
化学   96篇
晶体学   1篇
数学   65篇
物理学   31篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   7篇
  2018年   6篇
  2017年   3篇
  2016年   10篇
  2015年   4篇
  2014年   6篇
  2013年   21篇
  2012年   10篇
  2011年   9篇
  2010年   6篇
  2009年   8篇
  2008年   2篇
  2007年   7篇
  2006年   6篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   10篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   4篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1973年   2篇
  1972年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
1.
Computational Mathematics and Modeling - Based on the extended simplest equation method, we construct solitons and other solutions for the nonlinear convection-diffusion-reaction equation with...  相似文献   
2.
Zayed  Sahar  Belal  Fathalla 《Chromatographia》2022,85(5):481-488
Chromatographia - Tocilizumab is a monoclonal antibody used in the treatment of several inflammatory and autoimmune diseases as well as cancers. Tocilizumab improves clinical outcomes and reduce...  相似文献   
3.
Filamins (FLN) are a family of actin-binding proteins involved in regulating the cytoskeleton and signaling phenomenon by developing a network with F-actin and FLN-binding partners. The FLN family comprises three conserved isoforms in mammals: FLNA, FLNB, and FLNC. FLNB is a multidomain monomer protein with domains containing an actin-binding N-terminal domain (ABD 1–242), encompassing two calponin-homology domains (assigned CH1 and CH2). Primary variants in FLNB mostly occur in the domain (CH2) and surrounding the hinge-1 region. The four autosomal dominant disorders that are associated with FLNB variants are Larsen syndrome, atelosteogenesis type I (AOI), atelosteogenesis type III (AOIII), and boomerang dysplasia (BD). Despite the intense clustering of FLNB variants contributing to the LS-AO-BD disorders, the genotype-phenotype correlation is still enigmatic. In silico prediction tools and molecular dynamics simulation (MDS) approaches have offered the potential for variant classification and pathogenicity predictions. We retrieved 285 FLNB missense variants from the UniProt, ClinVar, and HGMD databases in the current study. Of these, five and 39 variants were located in the CH1 and CH2 domains, respectively. These variants were subjected to various pathogenicity and stability prediction tools, evolutionary and conservation analyses, and biophysical and physicochemical properties analyses. Molecular dynamics simulation (MDS) was performed on the three candidate variants in the CH2 domain (W148R, F161C, and L171R) that were predicted to be the most pathogenic. The MDS analysis results showed that these three variants are highly compact compared to the native protein, suggesting that they could affect the protein on the structural and functional levels. The computational approach demonstrates the differences between the FLNB mutants and the wild type in a structural and functional context. Our findings expand our knowledge on the genotype-phenotype correlation in FLNB-related LS-AO-BD disorders on the molecular level, which may pave the way for optimizing drug therapy by integrating precision medicine.  相似文献   
4.
Turbulent flames with compositionally inhomogeneous mixtures are common in many combustion systems. Turbulent jet flames with a circular nozzle burner were used earlier to study the impact of inhomogeneous mixtures, and these studies showed that the nozzle radius affects the flame stability. Accordingly, planar turbulent flames with inhomogeneous turbulent jet are created in a concentric flow slot burner (CFSB) to avoid this effect in the present study. The stability characteristics, the mixing field structure, and the flame front structure were measured, and the correlations between stability and the mixing field structure were investigated. The mixture fraction field was measured in non-reacting jets at the nozzle exit using highly resolved Rayleigh scattering technique, and the flame front was measured in some selected turbulent flames using high-speed Planar Laser-Induced Fluorescence (PLIF) of OH technique. The data show strong correlations between flame stability and the range of mixture fraction fluctuations. The flames are highly stabilized within a mixing field environment with the range of fluctuation in mixture fraction close to the range of the flammability limits. The mixing field structure is also illustrated and discussed using a mixing regime diagram and showed that the scatter of the data of the different cases is consistent with the classified mixing regimes. Lean flames are stabilized in the current slot burner. The flame front structure topology varies consistently from thin, small curvature at the low level of turbulence and higher equivalence ratio to more wrinkled, larger curvature, but a thicker structure at a higher level of turbulence and lower equivalence ratio.  相似文献   
5.
6.

Background

Loratadine is a commonly used selective non-sedating antihistaminic drug. Desloratadine is the active metabolite of loratadine and, in addition, a potential impurity in loratadine bulk powder stated by the United States Pharmacopeia as a related substance of loratadine. Published methods for the determination of both analytes suffer from limited throughput due to the time-consuming steps and tedious extraction procedures needed for the analysis of biological samples. Therefore, there is a strong demand to develop a simple rapid and sensitive analytical method that can detect and quantitate both analytes in pharmaceutical preparations and biological fluids without prior sample extraction steps.

Results

A highly-sensitive and time-saving micellar liquid chromatographic method is developed for the simultaneous determination of loratadine and desloratadine. The proposed method is the first analytical method for the determination of this mixture using a monolithic column with a mobile phase composed of 0.15 M sodium dodecyl sulfate, 10% n-Butanol and 0.3% triethylamine in 0.02 M phosphoric acid, adjusted to pH 3.5 and pumped at a flow rate of 1.2 mL/min. The eluted analytes are monitored with fluorescence detection at 440 nm after excitation at 280 nm. The developed method is linear over the concentration range of 20.0–200.0 ng/mL for both analytes. The method detection limits are 15.0 and 13.0 ng/mL and the limits of quantification are 20.0 and 18.0 ng/mL for loratadine and desloratadine, respectively. Validation of the developed method reveals an accuracy of higher than 97% and intra- and inter-day precisions with relative standard deviations not exceeding 2%.

Conclusions

The method can be successfully applied to the determination of both analytes in various matrices including pharmaceutical preparations, human urine, plasma and breast milk samples with a run-time of less than 5 min and without prior extraction procedures. The method is ideally suited for use in quality control laboratories. Moreover, it could be a simple time-saving alternative to the official pharmacopeial method for testing desloratadine as a potential impurity in loratadine bulk powder.
Graphical abstract Typical chromatogram of loratadine and its major metabolite desloratadine using the proposed micellar HPLC method
  相似文献   
7.
8.
9.
In this article, we have used the homotopy perturbation method (HPM) to find the travelling wave solutions for some non-linear initial-value problems in the mathematical physics. These problems consist of the Burgers–Fisher equation, the Kuramoto–Sivashinsky equation, the coupled Schordinger KdV equations and the long–short wave resonance equations together with initial conditions. The results of these problems reveal that the HPM is very powerful, effective, convenient and quite accurate to the systems of non-linear equations. It is predicted that this method can be found widely applicable in engineering and physics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号