首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  数学   1篇
  2005年   1篇
排序方式: 共有1条查询结果,搜索用时 109 毫秒
1
1.
We introduce a nonlinear regression modeling strategy, using a regularized local likelihood method. The local likelihood method is effective for analyzing data with complex structure. It might be, however, pointed out that the stability of the local likelihood estimator is not necessarily guaranteed in the case that the structure of system is quite complex. In order to overcome this difficulty, we propose a regularized local likelihood method with a polynomial function which unites local likelihood and regularization. A crucial issue in constructing nonlinear regression models is the choice of a smoothing parameter, the degree of polynomial and a regularization parameter. In order to evaluate models estimated by the regularized local likelihood method, we derive a model selection criterion from an information-theoretic point of view. Real data analysis and Monte Carlo experiments are conducted to examine the performance of our modeling strategy.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号