首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
力学   2篇
数学   16篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
  1998年   1篇
  1987年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Implicit function theorems are derived for nonlinear set valued equations that satisfy a relaxed one-sided Lipschitz condition. We discuss a local and a global version and study in detail the continuity properties of the implicit set-valued function. Applications are provided to the Crank–Nicolson scheme for differential inclusions and to the analysis of differential algebraic inclusions.  相似文献   
2.
We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least k column vectors, where k is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show that the original nonlinear eigenvalue problem reduces to a linear eigenvalue problem of dimension k. No initial approximations of eigenvalues and eigenvectors are needed. The method is particularly suitable for moderately large eigenvalue problems where k is much smaller than the matrix dimension. We also give an extension of the method to the case where k is larger than the matrix dimension. The quadrature errors caused by the trapezoid sum are discussed for the case of analytic closed contours. Using well known techniques it is shown that the error decays exponentially with an exponent given by the product of the number of quadrature points and the minimal distance of the eigenvalues to the contour.  相似文献   
3.
4.
In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abstract point of view. Under suitable assumptions on the boundary operators, we prove that the approximations converge regularly (in the sense of discrete approximations) to the all line problem, which has strong implications for the behavior of resolvents and spectra. As an application, we obtain resolvent estimates for abstract coupled hyperbolic–parabolic equations. Furthermore, we show that our results apply to the FitzHugh–Nagumo system.  相似文献   
5.
Homoclinic orbits in the fast dynamics of singular perturbation problems are usually analyzed by a combination of Fenichel's invariant manifold theory with general transversality arguments (see Ref. 29 and the Exchange Lemma in Ref. 16). In this paper an alternative direct approach is developed which uses a two-time scaling and a contraction argument in exponentially weighted spaces. Homoclinic orbits with one last transition are treated and it is shown how -expansions can be extracted rigorously from this approach. The result is applied to a singularity perturbed Bogdanov point in the FitzHugh–Nagumo system.Supported by DFG Schwerpunktprogramm Ergodentheorie, Analysis und effiziente Simulation dynamischer Systeme..  相似文献   
6.
In this paper we propose a numerical method for computing all Lyapunov coefficients of a discrete time dynamical system by spatial integration. The method extends an approach of Aston and Dellnitz (Comput Methods Appl Mech Eng 170:223–237, 1999) who use a box approximation of an underlying ergodic measure and compute the first Lyapunov exponent from a spatial average of the norms of the Jacobian for the iterated map. In the hybrid method proposed here, we combine this approach with classical QR-oriented methods by integrating suitable R-factors with respect to the invariant measure. In this way we obtain approximate values for all Lyapunov exponents. Assuming somewhat stronger conditions than those of Oseledec’ multiplicative theorem, these values satisfy an error expansion that allows to accelerate convergence through extrapolation. W.-J. Beyn and A. Lust was supported by CRC 701 ‘Spectral Analysis and Topological Methods in Mathematics’. The paper is mainly based on the PhD thesis [27] of A. Lust.  相似文献   
7.
Investigating the stability of nonlinear waves often leads to linear or nonlinear eigenvalue problems for differential operators on unbounded domains. In this paper we propose to detect and approximate the point spectra of such operators (and the associated eigenfunctions) via contour integrals of solutions to resolvent equations. The approach is based on Keldysh’ theorem and extends a recent method for matrices depending analytically on the eigenvalue parameter. We show that errors are well-controlled under very general assumptions when the resolvent equations are solved via boundary value problems on finite domains. Two applications are presented: an analytical study of Schrödinger operators on the real line as well as on bounded intervals and a numerical study of the FitzHugh–Nagumo system. We also relate the contour method to the well-known Evans function and show that our approach provides an alternative to evaluating and computing its zeros.  相似文献   
8.
9.
Invariant pairs have been proposed as a numerically robust means to represent and compute several eigenvalues along with the corresponding (generalized) eigenvectors for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In this work, we consider nonlinear eigenvalue problems that depend on an additional parameter and our interest is to track several eigenvalues as this parameter varies. Based on the concept of invariant pairs, a theoretically sound and reliable numerical continuation procedure is developed. Particular attention is paid to the situation when the procedure approaches a singularity, that is, when eigenvalues included in the invariant pair collide with other eigenvalues. For the real generic case, it is proven that such a singularity only occurs when two eigenvalues collide on the real axis. It is shown how this situation can be handled numerically by an appropriate expansion of the invariant pair. The viability of our continuation procedure is illustrated by a numerical example.  相似文献   
10.
We consider an autonomous dynamical system discretized by a one-step method. The point z = 0 is assumed to be fixed under the continuous and the discrete flows. We allow z = 0 to be non-hyperbolic. The continuous system has a center-unstable manifold and we show the existence of approximating invariant manifolds for the discretizations. The manifolds for the continuous and the discrete systems share the property of being locally attracting at an exponential rate; the dynamics inside the manifolds can differ qualitatively, however, for all step-sizes h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号