首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   35篇
  国内免费   21篇
化学   123篇
晶体学   1篇
力学   6篇
综合类   3篇
数学   39篇
物理学   89篇
  2024年   1篇
  2023年   7篇
  2022年   8篇
  2021年   14篇
  2020年   13篇
  2019年   13篇
  2018年   12篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   22篇
  2013年   13篇
  2012年   23篇
  2011年   18篇
  2010年   6篇
  2009年   10篇
  2008年   9篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   6篇
  1998年   5篇
  1997年   8篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1983年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
1.
Since the concept of aggregation-induced emission (AIE) was proposed by Benzhong Tang's research group in 2001, the exploration of the mechanism of AIE and the development of new high-performance AIE materials have been the focus and goal of this field. On the basis of a large number of experiment results, AIE mechanism has been well explained by lots of works, such as restricted intramolecular motion (RIM), J-aggregate et al. As tetraphenylethlene (TPE) molecules are stacked, the rotation of the benzene ring rotor is blocked, and the energy attenuation is released in the form of radiation, showing the AIE effect. In order to further explore the AIE effect of TPE, we performed electronic structure, spectrum simulation, and AIE mechanism calculations of the anthryl-tetraphenylethene (TPE-an) monomer and dimer in the gas phase, tetrahydrofuran (THF), and aqueous solutions at the B3LYP/6-31G** level. The calculation results show that TPE-an molecule is in a propeller-like configuration, and its fluorescence intensity is weak; compared with the monomer, the fluorescence intensity of the dimer increases by 87% in aqueous solution; the fluorescence intensity in the gas phase, THF solution, and aqueous solution gradually enhances with the increase of the degree of aggregation, which are consistent with the experimental results. The enhancement of fluorescence intensity is caused by the change of molecular structure caused by aggregation. This detailed AIE luminescence mechanism will provide theoretical guidance for AIE material design.  相似文献   
2.
Six parts of lotus (seeds, leaves, plumule, stamens, receptacles and rhizome nodes) are herbal medicines that are listed in the Chinese Pharmacopoeia. Their indications and functions have been confirmed by a long history of clinical practice. To fully understand the material basis of clinical applications, UPLC-QToF-MS combined with the UNIFI platform and multivariate statistical analysis was used in this study. As a result, a total of 171 compounds were detected and characterized from the six parts, and 23 robust biomarkers were discovered. The method can be used as a standard protocol for the direct identification and prediction of the six parts of lotus. Meanwhile, these discoveries are valuable for improving the quality control method of herbal medicines. Most importantly, this was the first time that alkaloids were detected in the stamen, and terpenoids were detected in the cored seed. The stamen is a noteworthy part because it contains the greatest diversity of flavonoids and terpenoids, but research on the stamen is rather limited.  相似文献   
3.
多化学组份反应气体流动的Godunov格式   总被引:1,自引:0,他引:1  
本文将单介质气体流动的Goduoov方法推广到多化学组份气体流动的计算中,建立了多化学组份气体的间断分解公式以及任意四边形网格下的Godunov方法的差分格式,提出了处理自由边界的虚相法,应用第二类网格,计算了超音速射流及其冲击问题的几个算例,并且同实验结果进行了比较。  相似文献   
4.
真实火箭射流冲击流场中激波结构的实验研究   总被引:3,自引:0,他引:3  
廉闻宇  张福祥 《力学学报》1990,22(6):737-741
本文采用一种有效的激光-莫瑞光栅干涉系统首次拍摄到真实火箭燃气射流冲击流场的激波结构.解决了长期以来无法拍摄到高温、高速、强火焰光的火箭射流流场图像的问题。利用这一系统,研究了射流冲击流场中激波结构的一些变化规律,发现了一些新的激波结构。较系统地研究了欠膨胀射流冲击各种锥体的激波形态。  相似文献   
5.
The single or co-combustion experiments of high-Ca pyrolyzed biochar and high-Si coal were carried out on a drop tube furnace (DTF) at 1300 °C under air and oxyfuel (CO2:O2=50:50, oxy50) conditions. The produced PM10 (of an aerodynamic diameter of 10 µm or less) was analyzed to investigate the interactions during co-combustion. Due to the characteristics of the selected samples (low S and Cl), the PM1 emissions including PM0.1 and PM0.1–1 are very low during single combustion, except for the PM0.1–1 emission during the combustion of biochar under oxy50 condition because of the massive partitioning of Mg, Ca and Fe. The interaction during co-combustion was observed to mainly occur in the generation of PM1–10, and also slightly occur in the formation of PM0.1–1 under oxy50 condition. The capture of Mg, Ca, and Fe from biochar by the Si-containing minerals in coal under the oxy50 condition results in a slight decrease in PM0.1–1 during co-combustion. The higher the proportion of coal blended, the more obvious the reduction of elements. As for the formation of PM1–10 during co-combustion, high-melting minerals of biochar would weaken the coalescence of minerals in coal to cause more PM10, while the large mineral grains of coal would capture the minerals in biochar to generate more PM10+. Under the competition of the above two types of interactions, the experimental value of PM1–10 yields was almost consistent with the theoretically calculated value, except for blended ratio of 80:20 (coal: biochar, air) or 50:50 (oxy50) with prior interaction predominating.  相似文献   
6.
Ketones have been considered as potential biofuels and main components of blend stock for internal engines. To better understand the chemical kinetics of ketones, ignition delay times of 2-pentanone (propyl methyl ketone, PMK) and 3-pentanone (diethyl ketone, DEK) were measured at temperatures of 895–1128 K under 10 and 20 bar, at equivalence ratios (?) of 0.5 and 1.0 in a rapid compression machine (RCM). To explore the impact of carbonyl functionality and resonance stabilized structures of fuel radicals on their combustion kinetics, high-temperature pyrolysis at 1130 K and relatively low-temperature oxidation at 950 K studies were performed in an RCM, and the time-resolved species concentration profiles under these two conditions were quantified using a fast sampling system and gas chromatography (GC). A new kinetic model containing low-temperature reactions was built aiming at predicting the pyrolysis and oxidation behaviors of both ketones. The consumption pathways of the resonance stabilization fuel radicals through oxygen addition and following reactions are promoted since the decomposition rates of these radicals are about 4 orders magnitudes lower than regular fuel radicals. The occurrences of the so-called “addition-dissociation reactions”, i.e., ketones reacting with a hydrogen yielding aldehyde or reacting with a methyl radical yielding shorter-chain-length ketones, are verified in pyrolysis experiments. Based on experiments and model analysis, the carbonyl functionality in both ketones is preserved during the process of β-scissions of fuel radicals and α-scissions of fuel-related acyl radicals, resulting in the direct formation of CO and ketene. However, the position of carbonyl functionality has a significant impact on the species pools.  相似文献   
7.
Diisopropyl ether (DIPE) is considered as a promising gasoline additive due to the favorable blending Reid vapor pressure and the low water solubility. To get a good understanding of the DIPE oxidation chemistry, oxidation experiments of a stoichiometric mixture of DIPE/O2/Ar/Kr were performed in a jet-stirred reactor (JSR) at atmospheric pressure over the temperature range of 525–900 K in this work. About 30 intermediates and products were identified and quantified using a photoionization molecular-beam mass spectrometer (PI-MBMS). Furthermore, a detailed kinetic model was proposed for DIPE oxidation, which showed satisfactory performances in predicting the species concentration profiles in this work as well as those in literature. For DIPE oxidation, the fuel consumption was observed only above 750 K, even though DIPE has two tertiary hydrogen atoms that are easy to be abstracted so that low-temperature oxidation reactivity is expected. The low oxidation reactivity at low temperature is because the formed OOQOOH radical mostly dissociates back to QOOH+O2, instead of undergoing intramolecular isomerization which leads to the low-temperature chain-branching. At higher temperature, DIPE is mainly consumed by hydrogen abstraction reactions from the carbon atoms adjacent to the oxygen atom, producing dominantly the IC3H7OC(CH3)2 fuel radical, which then decomposes rapidly via CO bond β-scission instead of combining with O2. In contrast, the minor fuel radical IC3H7OCH(CH3)CH2 tends to go through the O2 addition reaction and the subsequent chain branching reactions, as confirmed by the detection of cyclic ether intermediates. Propylene and acetone are the most abundant intermediates in DIPE oxidation, both of which predominantly come from the initial fuel decomposition steps. Other intermediates are mainly formed via the consumption of these two species.  相似文献   
8.
Tm3+ and In3+ co-doped LaAlO3 phosphors were prepared by a Pechini sol–gel method and characterized by X-ray diffraction, scanning electron microscope, and cathodoluminescence spectrum. The phosphor is composed of slightly aggregated particles with approximately spherical shape and a narrow size range of 1.0–1.5 μm. Under voltage electron beam excitation, the phosphor shows the characteristic emissions of Tm3+. All the color purity, radiant efficiency, luminous efficiency, and stability of the optimum LaAlO3:0.01Tm3+, 0.04In3+ phosphor are superior to these of commercial ZnS:Ag,Cl phosphor. These tests suggest that it could be a potential candidate as a blue phosphor for field emission displays.  相似文献   
9.
Acetyltropic acid is an important synthetic intermediate for preparation of tropane alkaloid derivatives, which can be used as anticholinergic drugs, deliriants, and stimulants. In the present work, acetyltropic acid was successfully enantioseparated by countercurrent chromatography using sulfobutyl ether‐β‐cyclodextrin as chiral selector. A biphasic solvent system composed of n‐butyl acetate/n‐hexane/0.1 mol/L citrate buffer at pH = 2.2 containing 0.1 mol/L of sulfobutyl ether‐β‐cyclodextrin (7:3:10, v/v) was selected, which produced a suitable distribution ratio D= 1.14, D= 2.31 and a high enantioseparation factor α = 2.03. Baseline separation was achieved for preparative enantioseparation of 50 mg of racemic acetyltropic acid. A method for chiral analysis of acetyltropic acid by conventional reverse phase liquid chromatography with hydroxylpropyl‐β‐cyclodextrin as mobile phase additive was established, and formation constants of inclusion complex were determined. It was found that different substituted β‐cyclodextrin should be selected for enantioseparation of acetyltropic acid by countercurrent chromatography and reverse phase liquid chromatography.  相似文献   
10.
White top-emitting organic light-emitting devices (TEOLEDs) were fabricated on a glass substrate with metal/organic multilayer of (Ag/Alq3)2 (Alq3 is tris-(8-hydroxyquinoline) aluminum) as cathode. White TEOLEDs with high efficiency were obtained due to the microcavity effects. And the (Ag/Alq3)2 cathode, which adjusted the optical characteristics of the devices, played an important role. In addition, Alq3–Ag–Alq3 multilayer could work as a buffer layer, which would simplify the process of encapsulation for devices. We also calculated the electroluminescence spectrum of devices encapsulated with Al2O3 (150 nm) and Al2O3(75 nm)/ZrO2(75 nm). And the results indicated that the CIE coordinates is almost the same between with and without encapsulating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号