首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2578篇
  免费   98篇
  国内免费   26篇
化学   1465篇
晶体学   26篇
力学   142篇
数学   323篇
物理学   746篇
  2023年   7篇
  2022年   13篇
  2021年   43篇
  2020年   41篇
  2019年   46篇
  2018年   20篇
  2017年   27篇
  2016年   52篇
  2015年   67篇
  2014年   90篇
  2013年   140篇
  2012年   175篇
  2011年   198篇
  2010年   124篇
  2009年   117篇
  2008年   200篇
  2007年   138篇
  2006年   150篇
  2005年   127篇
  2004年   110篇
  2003年   81篇
  2002年   79篇
  2001年   59篇
  2000年   56篇
  1999年   32篇
  1998年   30篇
  1997年   17篇
  1996年   37篇
  1995年   36篇
  1994年   35篇
  1993年   40篇
  1992年   30篇
  1991年   36篇
  1990年   22篇
  1989年   20篇
  1988年   24篇
  1987年   16篇
  1986年   15篇
  1985年   19篇
  1984年   19篇
  1983年   21篇
  1982年   16篇
  1981年   10篇
  1980年   5篇
  1979年   10篇
  1978年   11篇
  1977年   11篇
  1976年   7篇
  1974年   4篇
  1972年   4篇
排序方式: 共有2702条查询结果,搜索用时 31 毫秒
1.
To elucidate the origin of antibacterial activity of ZnO nanoparticles, a reactive oxygen species (ROS) mechanism is systematically investigated based on electronic and protonic conductions. While the enhancement of antibacterial activity by an increase in electronic conductivity is marginal, an apparent improvement is observed by in the increase of protonic conductivity in terms of the surface basicity. This study first demonstrates that antibacterial activity can be enhanced by controlling the surface basicity of solid particles. The basicity of ZnO can be modulated by doping alkaline‐earth oxides such as MgO and CaO, and it results in the increase of hydroxyl defects on the surface of solid particles. The basicity shows a strong dependency on mobile OH concentrations. The increase of ROS hydroxyl radicals is confirmed by Mg (ZMO) or Ca‐doping (ZCO), which shows high antibacterial activity, and Ca‐doped ZnO exhibits the highest performance. It is clearly observed that the antibacterial activity is proportional to the basicity, which is controlled by the mobile OH formation. While both electrons and hydroxyl species are required for ROS reactions, it is concluded that the formation of hydroxyl species is a key factor in improving the antibacterial activity in ZnO.  相似文献   
2.
Abstract

In this study, as a continuous effort for searching efficient blue-emitting materials, we designed and synthesized materials based on indeno[1,2-a]arene. OLED devices using these materials were fabricated in the following sequence; ITO (180?nm)/N,N'-diphenyl-N,N'-(2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) (50?nm)/emitting materials (30?nm)/4,7-diphenyl-1,10-phenanthroline (Bphen) (30?nm)/Liq/Al (2/100?nm). Particularly, a device using 7,7-dimethyl-7H-indeno[1,2-a]pyrene as emitter showed maximum values of luminous efficiency, power efficiency, and external quantum efficiency of 1.10?cd/A, 0.49?lm/W, 1.47% at 20?mA/cm2, respectively with CIE (x,y) coordinates of (0.15, 0.08) at 6.0V.  相似文献   
3.

Recently, Liu (Int J Theor Phys: pp.1–6, 2018) pointed out that Song et al.’s multiparty quantum direct secret sharing protocol (Int J Theor Phys: 57, 1559, 2018) suffers from several attacks and then an improved quantum direct secret sharing protocol was hence proposed. However, this study shows that Liu’s protocol still suffers from an intercept-resend attack. To solve this problem, a modification is proposed here.

  相似文献   
4.
Design of highly active and stable electrocatalyst is a major objective in a fuel cell. The special situation imposed to the electrocatalyst such as one of the most sluggish catalysis of oxygen reduction reaction, inherent structural instability of dispersed nanoparticle, harsh electrochemical conditions of electric potential and nonzero pH aqueous solution requires unique attention in the design. Considering that various attempts have been made for the purpose, high-speed but rigorous formalisms to evaluate the performance of candidates are crucial.This review article briefly introduces recently developed first-principles computational methodologies mainly applied to catalytic activity and electrochemical stability of electrocatalysts in proton exchange membrane fuel cells. Innovative design principles deduced from the outcomes are clearly discussed.  相似文献   
5.
6.
Oxo-bridged trimeric chromium acetate clusters [Cr3O(OOCCH3)6(H2O)3]NO3 have been encapsulated for the first time in the mesoporous cages of the chromium terephthalate MIL-101(Cr). The isolated clusters in MIL-101(Cr) have increased affinity towards propylene compared to propane, due to generation of a new kind of pocket-based propylene-binding site, as supported by DFT calculations.  相似文献   
7.
Photoelectrochemical (PEC) water splitting is a promising method for the conversion of solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (α-Fe2O3) is one of the most attractive materials for a highly efficient charge carrier generation and collection due to its large specific surface area and the short minority carrier diffusion length. In the present work, the PEC water splitting performance of nanostructured α-Fe2O3 is investigated which was prepared by anodization followed by annealing in a low oxygen ambient (0.03 % O2 in Ar). It was found that low oxygen annealing can activate a significant PEC response of α-Fe2O3 even at a low temperature of 400 °C and provide an excellent PEC performance compared with classic air annealing. The photocurrent of the α-Fe2O3 annealed in the low oxygen at 1.5 V vs. RHE results as 0.5 mA cm−2, being 20 times higher than that of annealing in air. The obtained results show that the α-Fe2O3 annealed in low oxygen contains beneficial defects and promotes the transport of holes; it can be attributed to the improvement of conductivity due to the introduction of suitable oxygen vacancies in the α-Fe2O3. Additionally, we demonstrate the photocurrent of α-Fe2O3 annealed in low oxygen ambient can be further enhanced by Zn-Co LDH, which is a co-catalyst of oxygen evolution reaction. This indicates low oxygen annealing generates a promising method to obtain an excellent PEC water splitting performance from α-Fe2O3 photoanodes.  相似文献   
8.
We have synthesized new magnetic resonance imaging (MRI) T1 contrast agents (CA1 and CA2) that permit the activatable recognition of the cellular vicinal thiol motifs of the protein thioredoxin. The contrast agents showed MR relaxivities typical of gadolinium complexes with a single water molecule coordinated to a Gd3+ center (i.e., ~4.54 mM−1s−1) for both CA1 and CA2 at 60 MHz. The contrast agent CA1 showed a ~140% relaxivity enhancement in the presence of thioredoxin, a finding attributed to a reduction in the flexibility of the molecule after binding to thioredoxin. Support for this rationale, as opposed to one based on preferential binding, came from 1H-15N-HSQC NMR spectral studies; these revealed that the binding affinities toward thioredoxin were almost the same for both CA1 and CA2. In the case of CA1, T1-weighted phantom images of cancer cells (MCF-7, A549) could be generated based on the expression of thioredoxin. We further confirmed thioredoxin expression-dependent changes in the T1-weighted contrast via knockdown of the expression of the thioredoxin using siRNA-transfected MCF-7 cells. The nontoxic nature of CA1, coupled with its relaxivity features, leads us to suggest that it constitutes a first-in-class MRI T1 contrast agent that allows for the facile and noninvasive monitoring of vicinal thiol protein motif expression in live cells.  相似文献   
9.
Science China Mathematics - We study the toric degeneration of Weyl group translated Schubert divisors of a partial flag variety $$F{\ell _{{n_1}, \ldots,{n_k};n}}$$ via Gelfand-Cetlin polytopes....  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号