首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   0篇
化学   39篇
力学   4篇
数学   19篇
物理学   13篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有75条查询结果,搜索用时 156 毫秒
1.
A conjecture of Ehrenpreis states that any two compact Riemann surfaces of genus at least two have finite degree unbranched holomorphic covers that are arbitrarily close to each other in moduli space. Here we prove a weaker result where certain branched covers associated with arithmetic Riemann surfaces are allowed, and investigate the connection of our result with the original conjecture.  相似文献   
2.
3.
Nanoparticle labels have enhanced the performance of diagnostic, screening, and other measurement applications and hold further promise for more sensitive, precise, and cost-effective assay technologies. Nevertheless, a clear view of the biomolecular interactions on the molecular level is missing. Controlling the ratio of molecular recognition over undesired nonspecific adhesion is the key to improve biosensing with nanoparticles. To improve this ratio with an aim to disallow nonspecific binding, a more detailed perspective into the kinetic differences between the cases is needed. We present the application of two novel methods to determine complex binding kinetics of bioconjugate nanoparticles, interferometry, and force spectroscopy. Force spectroscopy is an atomic force microscopy technique and optical interferometry is a direct method to monitor reaction kinetics in second-hour timescale, both having steadily increasing importance in nanomedicine. The combination is perfectly suited for this purpose, due to the high sensitivity to detect binding events and the ability to investigate biological samples under physiological conditions. We have attached a single biofunctionalized nanoparticle to the outer tip apex and studied the binding behavior of the nanoparticle in a sandwich-type immunoassay using dynamic force spectroscopy in millisecond timescale. Utilization of the two novel methods allowed characterization of binding kinetics in a time range spanning from 50 ms to 4 h. These experiments allowed detection and demonstration of differences between specific and nonspecific binding. Most importantly, nonspecific binding of a nanoparticle was reduced at contact times below 100 ms with the solid-phase surface.
Figure A single biofunctionalized nanoparticle was attached to the outer tip apex and the binding behavior of the nanoparticle in a sandwich-type immunoassay, A) without analyte, B) with analyte and C) saturating analyte concentration, was recorded using dynamic force spectroscopy in millisecond timescale. The setting allowed measurement of the association speed of nonspecific binding.
  相似文献   
4.
A disposable tri-enzymatic biosensor is presented for the determination of α-amylase in human saliva. It is based on the quantity of maltose generated by hydrolysis of maltopentose in the presence of salivary α-amylase. The biosensor is fabricated by co-immobilization of the enzymes α-glucosidase, glucose oxidase, and mutarotase on screen-printed electrodes modified with Prussian Blue. The assay can be performed with a “drop” of sample, this allowing for ease and simplicity. A linear relationship is found for the range from 5 to 250 units per mL, with an LOD of 5 units per mL. The biosensor is stable for at least one month and over this time retains 80% of its original activity. The system was then evaluated for matrix effects of human saliva and compared to a spectrometric method using a commercially available kit.  相似文献   
5.

Background

The β-carbonic anhydrase (CA, EC 4.2.1.1) enzymes have been reported in a variety of organisms, but their existence in animals has been unclear. The purpose of the present study was to perform extensive sequence analysis to show that the β-CAs are present in invertebrates and to clone and characterize a member of this enzyme family from a representative model organism of the animal kingdom, e.g., Drosophila melanogaster.

Results

The novel β-CA gene, here named DmBCA, was identified from FlyBase, and its orthologs were searched and reconstructed from sequence databases, confirming the presence of β-CA sequences in 55 metazoan species. The corresponding recombinant enzyme was produced in Sf9 insect cells, purified, kinetically characterized, and its inhibition was investigated with a series of simple, inorganic anions. Holoenzyme molecular mass was defined by dynamic light scattering analysis and gel filtration, and the results suggested that the holoenzyme is a dimer. Double immunostaining confirmed predictions based on sequence analysis and localized DmBCA protein to mitochondria. The enzyme showed high CO2 hydratase activity, with a kcat of 9.5 × 105 s-1 and a kcat/KM of 1.1 × 108 M- 1s- 1. DmBCA was appreciably inhibited by the clinically-used sulfonamide acetazolamide, with an inhibition constant of 49 nM. It was moderately inhibited by halides, pseudohalides, hydrogen sulfide, bisulfite and sulfate (KI values of 0.67 - 1.36 mM) and more potently by sulfamide (KI of 0.15 mM). Bicarbonate, nitrate, nitrite and phenylarsonic/boronic acids were much weaker inhibitors (KIs of 26.9 - 43.7 mM).

Conclusions

The Drosophila β-CA represents a highly active mitochondrial enzyme that is a potential model enzyme for anti-parasitic drug development.  相似文献   
6.
7.
The electron impact induced fragmentations of nine 2,2-disubstituted 1,3-oxathiolanes have been studied by means of exact mass measurement and metastable ion analysis. The ring cleavage almost always takes place so that the C(2)? S and C(5)? O bonds are broken, leading to the most stable products. The nature of the substituents determines the primary fragmentations of molecular ions. Ring cleavage is important only if both substituents are alkyl groups or if the carbon attaching to the ring has an alkyl character. The loss of the substituent becomes the most favourable process if it is attached to the ring through the electron-deficient carbon atom.  相似文献   
8.
Reinforcing of cellulose nanofibril (CNF) films by partial dissolution with N-methylmorpholine-N-oxide (NMMO) was investigated. The method investigated is composed of impregnation of CNF film with liquid solution of NMMO followed by dry heat activation. The heat activation of the impregnated film was carried out using a heated calendering nip, which enabled simultaneous heating and compression. The partial dissolution of cellulose by NMMO caused a significant increase in the transparency of CNF film due to the decrease of film porosity and increased surface smoothness. The dry strength of the reinforced film was increased from 122 up to 195 MPa. Furthermore, the wet strength of the reinforced film was up to 70% greater than the dry strength of pure CNF film. The changes in the fibrillar structure were investigated with topographical imaging (SEM and AFM) and spectroscopically using NMR and FTIR. No significant changes in the fibril structure or cellulose morphology were observed. Moreover, the treated film resisted significant water pressure, highlighting CNF film’s permanent water resistance. The partial dissolution process with NMMO was also capable of reinforcing a CNF composite film with macro scale structural elements (lyocell short-cut fibres). The strategy investigated is a robust and fast method to improve the mechanical properties of fibrillary cellulose films, allowing them utilization in applications where improved water resistance and fully cellulosic character are required properties.  相似文献   
9.
A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films.  相似文献   
10.
In this paper, we give a new proof for the fact that the distributional weak solutions and the viscosity solutions of the p-Laplace equation ?div(|Du| p?2 Du) = 0 coincide. Our proof is more direct and transparent than the original proof of Juutinen et al. [8 Juutinen , P. , Lindqvist , P. , Manfredi , J.J. ( 2001 ). On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation . SIAM J. Math. Anal. 33 : 699717 .[Crossref], [Web of Science ®] [Google Scholar]], which relied on the full uniqueness machinery of the theory of viscosity solutions. We establish a similar result also for the solutions of the non-homogeneous version of the p-Laplace equation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号