首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
力学   1篇
数学   18篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2009年   2篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1978年   1篇
排序方式: 共有19条查询结果,搜索用时 16 毫秒
1.
The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.  相似文献   
2.
The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet problem (ϕ(u′))′ = λf(t, u, u′), u(0) = u(T) = A. Here λ is the positive parameter, A > 0, f is singular at the value 0 of its first phase variable and may be singular at the value A of its first and at the value 0 of its second phase variable. This work was supported by grant no. A100190703 of the Grant Agency of the Academy of Sciences of the Czech Republic and by the Council of Czech Government MSM 6198959214.  相似文献   
3.
4.
We investigate the existence of positive solutions to the singular fractional boundary value problem: $^c\hspace{-1.0pt}D^{\alpha }u +f(t,u,u^{\prime },^c\hspace{-2.0pt}D^{\mu }u)=0$, u′(0) = 0, u(1) = 0, where 1 < α < 2, 0 < μ < 1, f is a Lq‐Carathéodory function, $q > \frac{1}{\alpha -1}$, and f(t, x, y, z) may be singular at the value 0 of its space variables x, y, z. Here $^c \hspace{-1.0pt}D$ stands for the Caputo fractional derivative. The results are based on combining regularization and sequential techniques with a fixed point theorem on cones.  相似文献   
5.
The paper discusses the existence of positive and dead core solutions of the singular differential equation (?(u))=λf(t,u,u,u) satisfying the boundary conditions u(0)=A, u(T)=A, min{u(t):t∈[0,T]}=0. Here λ is a nonnegative parameter, A is a positive constant and the Carathéodory function f(t,x,y,z) is singular at the value 0 of its space variable y.  相似文献   
6.
This paper gives a generalization of the Sturm comparison theorem for differential equations (p): y″ = p(t)y, (q): y″ = q(t)y under the assumption that the function p ? q changes its sign exactly once on [a, b] or ∝tbp ? q, ∝atp ? q maintain the sign on [a, b]. The results are used for investigating the distributions of zeros of solutions and the derivative of solutions of (p), (q).  相似文献   
7.
Using the Leray-Schauder degree method sufficient conditions for the one-parameter boundary value problem x″ = f(t, x, x′, λ), α(x) = A, x(0) ? x(1) = B, x′(0) ? x′(1) = C, are stated. The application is given for a class of functional boundary value problems for nonlinear third-order functional differential equations depending on the parameter.  相似文献   
8.
The odd-order differential equation (−1)nx(2n+1)=f(t,x,…,x(2n)) together with the Lidstone boundary conditions x(2j)(0)=x(2j)(T)=0, 0?j?n−1, and the next condition x(2n)(0)=0 is discussed. Here f satisfying the local Carathéodory conditions can have singularities at the value zero of all its phase variables. Existence result for the above problem is proved by the general existence principle for singular boundary value problems.  相似文献   
9.
In the first part, we investigate the singular BVP \(\tfrac{d} {{dt}}^c D^\alpha u + (a/t)^c D^\alpha u = \mathcal{H}u\) , u(0) = A, u(1) = B, c D α u(t)| t=0 = 0, where \(\mathcal{H}\) is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems \(\tfrac{d} {{dt}}^c D^{\alpha _n } u + (a/t)^c D^{\alpha _n } u = f(t,u,^c D^{\beta _n } u)\) , u(0) = A, u(1) = B, \(\left. {^c D^{\alpha _n } u(t)} \right|_{t = 0} = 0\) where a < 0, 0 < β n α n < 1, lim n→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.  相似文献   
10.
A functional differential equation of the type where F: C1(J) → L1(J) is a unbounded operator, is considered. Sufficient conditions for the existence of at least two different solutions satisfying boundary conditions min{x(t): t ? J} = α, max{x(t): t ? J} = β are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号