首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2411篇
  免费   95篇
  国内免费   10篇
化学   1788篇
晶体学   19篇
力学   73篇
数学   244篇
物理学   392篇
  2023年   16篇
  2021年   18篇
  2020年   46篇
  2019年   35篇
  2018年   19篇
  2017年   13篇
  2016年   42篇
  2015年   49篇
  2014年   54篇
  2013年   124篇
  2012年   136篇
  2011年   187篇
  2010年   65篇
  2009年   64篇
  2008年   171篇
  2007年   183篇
  2006年   142篇
  2005年   161篇
  2004年   133篇
  2003年   112篇
  2002年   82篇
  2001年   27篇
  2000年   19篇
  1999年   23篇
  1998年   24篇
  1997年   23篇
  1996年   23篇
  1995年   29篇
  1994年   23篇
  1993年   18篇
  1992年   13篇
  1991年   22篇
  1990年   15篇
  1989年   19篇
  1988年   11篇
  1987年   14篇
  1986年   21篇
  1985年   25篇
  1984年   21篇
  1983年   24篇
  1982年   27篇
  1981年   29篇
  1980年   21篇
  1979年   15篇
  1978年   19篇
  1977年   20篇
  1976年   13篇
  1974年   14篇
  1973年   13篇
  1968年   10篇
排序方式: 共有2516条查询结果,搜索用时 23 毫秒
1.
Solvent-free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N’-bis(2-ethylhexyl)-2,6-dibromo-1,4,5,8-naphthalenetetracarboxylic acid (Br2-NDI) by using Suzuki, Sonogashira and Buchwald–Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2) and are tolerant to air and atmospheric moisture. Furthermore, the real-world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.  相似文献   
2.
A phosphinine-borane adduct of a Me3Si-functionalized phosphinine and the Lewis acid B(C6F5)3 has been synthesized and characterized crystallographically for the first time. The reaction strongly depends on the nature of the substituents in the α-position of the phosphorus heterocycle. In contrast, the reaction of B2H6 with various substituted phosphinines leads to an equilibrium between the starting materials and the phosphinine–borane adducts that is determined by the Lewis basicity of the phosphinine. The novel phosphinine borane adduct ( 6 -B(C6F5)3) shows rapid and facile insertion and [4+2] cycloaddition reactivity towards phenylacetylene. A hitherto unknown dihydro-1-phosphabarrelene is formed with styrene. The reaction with an ester provides a new, facile and selective route to 1-R-phosphininium salts. These salts then undergo a [4+2] cycloaddition in the presence of Me3Si−C≡CH and styrene to cleanly form unprecedented derivatives of 1-R-phosphabarrelenium salts.  相似文献   
3.
Cancer is a highly heterogenous disease that requires precise detection tools and active surveillance methods. Liquid biopsy assays provide an agnostic way to follow the complex trajectory of cancer, providing better patient stratification tools for optimized treatment. Here, we present the development of a low-volume liquid biopsy assay called cyc-DEP (cyclic immunofluorescent imaging on dielectrophoretic chip) to profile biomarkers collected on a dielectrophoretic microfluidic chip platform. To enable on-chip cyclic imaging, we optimized a fluorophore quenching method and sequential rounds of on-chip staining with fluorescently conjugated primary antibodies. cyc-DEP allows for the quantification of a multiplex array of proteins using 25 µl of a patient plasma sample. We utilized nanoparticles from a prostate adenocarcinoma (LNCaP) cell line and a panel of six target proteins to develop our proof-of-concept technique. We then used cyc-DEP to quantify blood plasma levels of target proteins from healthy individuals, low-grade and high-grade prostate cancer patients (n = 3 each) in order to demonstrate that our platform is suitable for liquid biopsy analysis in its present form. To ensure accurate quantification of signal intensities and comparisons between different samples, we incorporated a signal intensity normalization method (fluorescent beads) and a custom signal intensity quantification algorithm that account for the distribution of signal across hundreds of collection regions on each chip. Our technique enabled a threefold improvement in multiplicity for detecting proteins associated with fluid samples, opening doors for early detection, and active surveillance through quantification of a multiplex array of biomarkers from low-volume liquid biopsies.  相似文献   
4.
The combination of potassium tert-butoxide and triethylsilane is unusual because it generates multiple different types of reactive intermediates simultaneously that provide access to (i) silyl radical reactions, (ii) hydrogen atom transfer reactions to closed shell molecules and to radicals, (iii) electron transfer reductions and (iv) hydride ion chemistry, giving scope for unprecedented outcomes. Until now, reactions with this reagent pair have generally been explained by reference to one of the intermediates, but we now highlight the interplay and competition between them.

The combination of potassium tert-butoxide and triethylsilane provides simultaneous access to multiple reactive intermediates, radicals, H-atom donors, hydride donors and electron donors, giving scope for unprecedented reaction outcomes.  相似文献   
5.
This Letter reports on the acceleration of the rate of formation of the boron–oxygen defect in p‐type Czochralski silicon with illumination intensities in excess of 2.1 × 1017 photons/cm2/s. It is observed that increased light intensities greatly enhance the rate of defect formation, without increasing the saturation concentration of the defect. These results suggest a dependence of the defect formation rate upon the total majority carrier concentration. Finally, a method using temperatures up to 475 K and an illumination intensity of 1.68 × 1019 photons/cm2/s is shown to result in near‐complete defect formation within seconds. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
6.
A second polymorph of the hydrochloride salt of the recreational drug ethylone, C12H16NO3+·Cl, is reported [systematic name: (±)‐2‐ethylammonio‐1‐(3,4‐methylenedioxyphenyl)propane‐1‐one chloride]. This polymorph, denoted form (A), appears in crystallizations performed above 308 K. The originally reported form (B) [Wood et al. (2015). Acta Cryst. C 71 , 32–38] crystallizes preferentially at room temperature. The conformations of the cations in the two forms differ by a 180° rotation about the C—C bond linking the side chain to the aromatic ring. Hydrogen bonding links the cations and anions in both forms into similar extended chains in which any one chain contains only a single enantiomer of the chiral cation, but the packing of the ions is different. In form (A), the aromatic rings of adjacent chains interleave, but pack equally well if neighbouring chains contain the same or opposite enantiomorph of the cation. The consequence of this is then near perfect inversion twinning in the structure. In form (B), neighbouring chains are always inverted, leading to a centrosymmetric space group. The question as to why the polymorphs crystallize at slightly different temperatures has been examined by density functional theory (DFT) and lattice energy calculations and a consideration of packing compactness. The free energy (ΔG) of the crystal lattice for polymorph (A) lies some 52 kJ mol−1 above that of polymorph (B).  相似文献   
7.
Organometallic bases are becoming increasingly complex, because mixing components can lead to bases superior to single‐component bases. To better understand this superiority, it is useful to study metalated intermediate structures prior to quenching. This study is on 1‐phenyl‐1H‐benzotriazole, which was previously deprotonated by an in situ ZnCl2 ? TMEDA/LiTMP (TMEDA=N,N,N′,N′‐tetramethylethylenediamine; TMP=2,2,6,6‐tetramethylpiperidide) mixture and then iodinated. Herein, reaction with LiTMP exposes the deficiency of the single‐component base as the crystalline product obtained was [{4‐R‐1‐(2‐lithiophenyl)‐1H‐benzotriazole ? 3THF}2], [R=2‐C6H4(Ph)NLi], in which ring opening of benzotriazole and N2 extrusion had occurred. Supporting lithiation by adding iBu2Al(TMP) induces trans‐metal trapping, in which C?Li bonds transform into C?Al bonds to stabilise the metalated intermediate. X‐ray diffraction studies revealed homodimeric [(4‐R′‐1‐phenyl‐1H‐benzotriazole)2], [R′=(iBu)2Al(μ‐TMP)Li], and its heterodimeric isomer [(4‐R′‐1‐phenyl‐1H‐benzotriazole){2‐R′‐1‐phenyl‐1H‐benzotriazole}], whose structure and slow conformational dynamics were probed by solution NMR spectroscopy.  相似文献   
8.
The external photocontrol over peptide folding, by the incorporation of molecular photoswitches into their structure, provides a powerful tool to study biological processes. However, it is limited so far to switches that exhibit only a rather limited geometrical change upon photoisomerization and that show thermal instability of the photoisomer. Here we describe the use of an overcrowded alkene photoswitch to control a model β-hairpin peptide. This photoresponsive unit undergoes a large conformational change and has two thermally stable isomers which has major influence on the secondary structure and the aggregation of the peptide, permitting the phototriggered formation of amyloid-like fibrils.  相似文献   
9.
The ability to communicate is fundamental to life as we know it and the key to success in many cases is based on having good communication skills. Be it written, spoken, visual, auditory or otherwise, effective communication can open many doors to hidden knowledge that can benefit the world. Science as an entity, which itself stems from the Latin word Scientia, (Engl. “knowledge”), has a tradition of not being particularly well communicated, with long words, vast and confusing concepts, and information overloads. However, as good as communication between scientists has generally become, there is still room for improvement. This article hopes to inform and inspire scientists to lead by example, to educate and advise in the best ways that we can, not just for non-experts, but for the interest of everyone.  相似文献   
10.
Protein–protein interactions (PPIs) provide a rich source of potential targets for drug discovery and biomedical science research. However, the identification of structural-diverse starting points for discovery of PPI inhibitors remains a significant challenge. Activity-directed synthesis (ADS), a function-driven discovery approach, was harnessed in the discovery of the p53/hDM2 PPI. Over two rounds of ADS, 346 microscale reactions were performed, with prioritisation on the basis of the activity of the resulting product mixtures. Four distinct and novel series of PPI inhibitors were discovered that, through biophysical characterisation, were shown to have promising ligand efficiencies. It was thus shown that ADS can facilitate ligand discovery for a target that does not have a defined small-molecule binding site, and can provide distinctive starting points for the discovery of PPI inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号