首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   41篇
  国内免费   6篇
化学   304篇
晶体学   1篇
力学   10篇
数学   61篇
物理学   92篇
  2024年   1篇
  2023年   3篇
  2022年   18篇
  2021年   15篇
  2020年   26篇
  2019年   34篇
  2018年   40篇
  2017年   24篇
  2016年   34篇
  2015年   28篇
  2014年   38篇
  2013年   65篇
  2012年   30篇
  2011年   33篇
  2010年   24篇
  2009年   17篇
  2008年   13篇
  2007年   12篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  1996年   2篇
  1992年   2篇
  1936年   1篇
排序方式: 共有468条查询结果,搜索用时 359 毫秒
1.
Molecular Diversity - The preparation, characterization and application of hydroxyapatite silica propyl bis aminoethoxy ethane cuprous complex (HASPBAEECC) as a novel hybrid nano-catalyst for...  相似文献   
2.
This article aims to provide a survey of biological applications of Schiff base macrocycles and their metal complexes, with emphasis given to the synthesis of the compounds and to their uses as antibacterial and antifungal agents. The literature on the subject, published during the 2005–2019 period, is shortly reviewed. This is an informed report collecting information on the addressed topic in a concise systematic way, and can be expected to be useful as a fast literature catalogue for researchers working on this and related domains.  相似文献   
3.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   
4.
5.
6.
To increase the profitability and sustainability of agricultural waste, a facile green approach was established to synthesize zinc oxide nanoparticles (ZnO NPs) using saffron leaf extract as a reducing and stabilizing agent. Structural characteristics of NPs were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and UV–Visible (UV–Vis) spectroscopy. Characterization results revealed that ZnO NPs is highly crystalline with a hexagonal wurtzite structure and spherical particles with diameter less than 50 nm, as confirmed by XRD and FESEM techniques. UV–Vis absorption spectra depicted an absorption peak at 370 nm, which confirms the formation of ZnO NPs. FTIR spectral analysis confirmed the presence of functional groups and metal oxygen groups. The biological activities of ZnO NPs were also investigated. The antibacterial effect of ZnO NPs was investigated against selected food pathogens (Salmonella Typhimurium, Listeria monocytogenes, and Enterococcus faecalis). The study results prove that the green synthesized ZnO NPs show enhanced antibacterial activity against S. Typhimurium when compared with other strains. A dose-dependent free radical scavenging activity was observed for ZnO NPs in both 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and fluorescence recovery after photobleaching (FRAP) assays. The ZnO NPs were evaluated for their photocatalytic activity during the degradation of methylene blue (MB) dye in aqueous solutions. The maximum removal of MB achieved was 64% with an initial ZnO NP concentration of 12 mg/mL under UV light. The present study revealed that the agricultural waste (saffron leaf) provides a simple and eco-friendly option to sustainably synthesize ZnO NPs for use as a photocatalyst. In addition, this is the first report on saffron leaf-mediated synthesis of ZnO NPs.  相似文献   
7.
A highly efficient Fe3O4@VitB1–Ag(I) magnetic catalyst has been obtained using surface modification of Fe3O4. To this end, silver chloride was immobilized on Fe3O4 nanoparticles via vitamin B1 biomolecules. The synthesized biocompatible magnetic catalyst was applied in an A3-coupling reaction in the presence of aldehyde, amine and phenyl acetylene under solvent-free conditions and afforded the desired products in excellent yields. Also, interactions between metal and ligand in the Fe3O4@VitB1–Ag(I) were studied using theoretical calculations.  相似文献   
8.
9.
Pure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers. It is found that DLNs synthesized by PLGA show great attraction to PPECs due to their stable negative charges, which would not degrade immediately in blood. The burst and drug release after less than 48h of this synthesized DLNs are 10% and 50%, respectively. These compounds can deliver the loaded-drug into the tumor site with the assistance of PPECs, and the targeted-retarded release will take place. Hence, local therapy can be achieved with much lower drug concentration (conventional chemotherapy [2 mg kg−1] versus DLNs-based chemotherapy [0.75 mg kg−1]) with negligible side effects in non-targeted organs. PPECs have many potential clinical applications for advanced-targeted chemotherapy with the lowest discernible side effects.  相似文献   
10.
In order to develop a sensor for the detection of toxic N2O molecules, the interaction of pristine and Aldoped BN nanosheets with an N2O molecule was investigated using density functional theory calculations. It was found that unlike the pristine sheet, the Al-doped sheet can effectively interact with the N2O molecule so that its electronic properties and conductivity are dramatically changed. Webelieve that replacing a B atom of the BN sheet with an Al atom may be a good strategy for improving the sensitivity of these nanosheets toward N2O, which cannot be trapped and detected by the pristine sheet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号