首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   6篇
化学   122篇
晶体学   1篇
力学   6篇
数学   9篇
物理学   98篇
  2023年   3篇
  2022年   7篇
  2021年   11篇
  2020年   8篇
  2019年   9篇
  2016年   11篇
  2015年   4篇
  2014年   4篇
  2013年   10篇
  2012年   5篇
  2011年   8篇
  2009年   4篇
  2008年   8篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1998年   2篇
  1997年   2篇
  1995年   4篇
  1991年   5篇
  1990年   2篇
  1988年   5篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1979年   3篇
  1978年   3篇
  1974年   4篇
  1972年   3篇
  1970年   7篇
  1968年   11篇
  1966年   2篇
  1962年   3篇
  1961年   3篇
  1960年   2篇
  1959年   7篇
  1958年   3篇
  1956年   7篇
  1954年   3篇
  1936年   3篇
  1932年   3篇
  1924年   2篇
  1922年   1篇
  1909年   1篇
排序方式: 共有236条查询结果,搜索用时 31 毫秒
1.
Fayad  S. S.  Seidl  D. T.  Reu  P. L. 《Experimental Mechanics》2020,60(2):249-263

Digital image correlation (DIC) is an optical metrology method widely used in experimental mechanics for full-field shape, displacement and strain measurements. The required strain resolution for engineering applications of interest mandates DIC to have a high image displacement matching accuracy, on the order of 1/100th of a pixel, which necessitates an understanding of DIC errors. In this paper, we examine two spatial bias terms that have been almost completely overlooked. They cause a persistent offset in the matching of image intensities and thus corrupt DIC results. We name them pattern-induced bias (PIB), and intensity discretization bias (IDB). We show that the PIB error occurs in the presence of an undermatched shape function and is primarily dictated by the underlying intensity pattern for a fixed displacement field and DIC settings. The IDB error is due to the quantization of the gray level intensity values in the digital camera. In this paper we demonstrate these errors and quantify their magnitudes both experimentally and with synthetic images.

  相似文献   
2.
3.
The reactivity of white phosphorus and yellow arsenic towards two different nickel nacnac complexes is investigated. The nickel complexes [(L1Ni)2tol] ( 1 , L1=[{N(C6H3iPr2-2,6)C(Me)}2CH]) and [K2][(L1Ni)2(μ,η1 : 1-N2)] ( 6 ) were reacted with P4, As4 and the interpnictogen compound AsP3, respectively, yielding the homobimetallic complexes [(L1Ni)2(μ-η2121-E4)] (E=P ( 2 a ), As ( 2 b ), AsP3 ( 2 c )), [(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 3 a ), As ( 3 b )) and [K@18-c-6(thf)2][L1Ni(η1 : 1-E4)] (E=P ( 7 a ), As ( 7 b )), respectively. Heating of 2 a , 2 b or 2 c also leads to the formation of 3 a or 3 b . Furthermore, the reactivity of these compounds towards reduction agents was investigated, leading to [K2][(L1Ni)2(μ,η2 : 2-P4)] ( 4 ) and [K@18-c-6(thf)3][(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 5 a ), As ( 5 b )), respectively. Compound 4 shows an unusual planarization of the initial Ni2P4-prism. All products were comprehensively characterized by crystallographic and spectroscopic methods.  相似文献   
4.
5.
Unprecedented functionalized products with an η4‐P5 ring are obtained by the reaction of [Cp*Fe(η5‐P5)] ( 1 ; Cp*=η5‐C5Me5) with different nucleophiles. With LiCH2SiMe3 and LiNMe2, the monoanionic products [Cp*Fe(η4‐P5CH2SiMe3)]? and [Cp*Fe(η4‐P5NMe2)]?, respectively, are formed. The reaction of 1 with NaNH2 leads to the formation of the trianionic compound [{Cp*Fe(η4‐P5)}2N]3?, whereas the reaction with LiPH2 yields [Cp*Fe(η4‐P5PH2)]? as the main product, with {[Cp*Fe(η4‐P5)]2PH}2? as a byproduct. The calculated energy profile of the reactions provides a rationale for the formation of the different products.  相似文献   
6.
Reu  P. L.  Blaysat  B.  Andó  E.  Bhattacharya  K.  Couture  C.  Couty  V.  Deb  D.  Fayad  S. S.  Iadicola  M. A.  Jaminion  S.  Klein  M.  Landauer  A. K.  Lava  P.  Liu  M.  Luan  L. K.  Olufsen  S. N.  Réthoré  J  Roubin  E.  Seidl  D. T.  Siebert  T.  Stamati  O.  Toussaint  E.  Turner  D.  Vemulapati  C. S. R.  Weikert  T.  Witz  J. F.  Witzel  O.  Yang  J. 《Experimental Mechanics》2022,62(4):639-654
Experimental Mechanics - The DIC Challenge 2.0 follows on from the work accomplished in the first Digital Image Correlation (DIC) Challenge Reu et al. (Experimental Mechanics 58(7):1067, 1). The...  相似文献   
7.

Abstract  

Near-UV irradiation of solutions of (Bu4N)AuCl4 in aerated ethanol-stabilized chloroform causes the continuous decomposition of chloroform, as evidenced by the production of many equivalents of HCl and peroxides. At the outset of irradiation, most of the AuCl4 is reduced to AuCl2 , but the reduction stops and is reversed. The same experiments done in ethanol-free chloroform cause chloroform decomposition only until the irreversible reduction of the gold is complete. In deoxygenated ethanol-free chloroform, irreversible reduction to AuCl2 is accompanied by the formation of HCl and CCl4, while the main decomposition products in deoxygenated ethanol-stabilized chloroform are HCl and C2Cl6. It is proposed that, in ethanol-free chloroform, photoreduction of AuCl4 begins with the concerted elimination of HCl from an association complex of CHCl3 with AuCl4 , and that ethanol suppresses { \textCHCl3 ·\textAuCl4 - } \{ {\text{CHCl}}_{3} \cdot {\text{AuCl}}_{4}^{ - } \} complex formation, leaving a slower radical process to carry out the photoreduction of AuCl4 in ethanol-stabilized chloroform. In the presence of oxygen, the radical process causes a build-up of CCl3OOH, which reoxidizes AuCl2 to AuCl4 and allows the photodecomposition of CHCl3 to continue indefinitely.  相似文献   
8.
Irradiation (λ > 320 nm) of ferrocene in chloroform causes decomposition of chloroform and the accumulation of HCl, CCl3OOH, and C2Cl6. This appears to occur initially through a cycle in which (a) ferrocene is oxidized to ferrocenium and tetrachloroferrate ions, (b) FeCl4 undergoes photodissociation, and (c) ferrocenium reoxidizes the chloroferrate(II) species. On extended photolysis, the concentrations of CCl3OOH and FeCl4 build up and a competing cycle in which FeCl4 is restored through oxidation of the chloroferrate(II) species by CCl3OOH accelerates the decomposition rate.  相似文献   
9.
10.
To initiate the high-pressure polymerization of ethylene, oxygen is used together with organic peroxides in a number of tubular reactor processes. Since molecular oxygen is capable of promoting or inhibiting radical polymerization, depending on the reaction conditions chosen, controlled experiments were carried out to clarify these aspects of high pressure ethylene polymerization. In continuous polymerization tests carried out at 1700 bar and temperatures between 110 and 320°C, conversions were determined with tert-amyl perneodecanoate and di-tert-butyl peroxide initiation in the presence of various quantities of oxygen. Batch tests using a photo-initiator together with oxygen were also carried out. A comparison with polymerizations under conditions of careful elimination of oxygen shows no effect on the peroxide-initiated polymerization up to temperatures of 160 to 170°C. Although oxygen is an initiator at higher temperatures, the conversions obtained from the simultaneous addition of controlled quantities of oxygen and organic peroxides is lower than that obtained by adding together the conversions from the separate polymerizations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号