首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2945篇
  免费   104篇
  国内免费   6篇
化学   2033篇
晶体学   23篇
力学   79篇
数学   458篇
物理学   462篇
  2023年   32篇
  2022年   26篇
  2021年   66篇
  2020年   81篇
  2019年   72篇
  2018年   47篇
  2017年   35篇
  2016年   106篇
  2015年   91篇
  2014年   95篇
  2013年   198篇
  2012年   210篇
  2011年   252篇
  2010年   126篇
  2009年   111篇
  2008年   149篇
  2007年   156篇
  2006年   161篇
  2005年   124篇
  2004年   83篇
  2003年   96篇
  2002年   64篇
  2001年   16篇
  2000年   16篇
  1997年   23篇
  1996年   25篇
  1995年   22篇
  1994年   27篇
  1993年   15篇
  1992年   20篇
  1991年   22篇
  1990年   24篇
  1989年   18篇
  1988年   16篇
  1985年   14篇
  1984年   19篇
  1983年   20篇
  1982年   30篇
  1981年   30篇
  1980年   25篇
  1979年   23篇
  1978年   18篇
  1977年   19篇
  1976年   17篇
  1975年   17篇
  1974年   14篇
  1973年   19篇
  1972年   17篇
  1971年   13篇
  1936年   10篇
排序方式: 共有3055条查询结果,搜索用时 15 毫秒
1.
Journal of Optimization Theory and Applications - The trade-off between the fuel consumption and drag coefficient makes the investigations of drag reduction of utmost importance. In this paper, the...  相似文献   
2.
Consider a two-dimensional stratified solitary wave propagating through a body of water that is bounded below by an impermeable ocean bed. In this work, we study how such a wave can be recovered from data consisting of the wave speed, upstream and downstream density and velocity profile, and the trace of the pressure on the bed. In particular, we prove that this data uniquely determines the wave, both in the (real) analytic and Sobolev regimes.  相似文献   
3.
Selective modification of natural proteins is a daunting methodological challenge and a stringent test of selectivity and reaction scope. There is a continued need for new reactivity and new selectivity concepts. Transition metals exhibit a wealth of unique reactivity that is orthogonal to biological reactions and processes. As such, metal‐based methods play an increasingly important role in bioconjugation. This Review examines metal‐based methods as well as their reactivity and selectivity for the functionalization of natural proteins and peptides.  相似文献   
4.
This Account details key developments in dimensional control of contorted aromatics for organic electronics. Coronene, perylene, pyrene, and [4]helicene, which are fragments of graphene, can be contorted using facile synthetic chemistry into large nanoribbons and nano‐architectures. In comparing contorted or higher‐dimensional graphene architectures to planar or lower‐dimensional species, the materials properties are reliably enhanced for the contorted aromatics. Examples of enhanced properties include optical absorptivity, conductivity, device photoconversion efficiency, and solubility. These enhancements are exemplified in organic photovoltaics, photodetectors, field effect transistors, and perovskite solar cells. Described herein are key advances in dimensional control of contorted aromatics that have resulted in world record photoconversion efficiencies, photodetection capabilities matching inorganic state‐of‐the‐art devices, and ~5 nm long ultrathin soluble graphene nanoribbons.  相似文献   
5.
Synthesis of the C?C bonds of ketones relies upon one high‐availability reagent (carboxylic acids) and one low‐availability reagent (organometallic reagents or alkyl iodides). We demonstrate here a ketone synthesis that couples two different carboxylic acid esters, N‐hydroxyphthalimide esters and S‐2‐pyridyl thioesters, to form aryl alkyl and dialkyl ketones in high yields. The keys to this approach are the use of a nickel catalyst with an electron‐poor bipyridine or terpyridine ligand, a THF/DMA mixed solvent system, and ZnCl2 to enhance the reactivity of the NHP ester. The resulting reaction can be used to form ketones that have previously been difficult to access, such as hindered tertiary/tertiary ketones with strained rings and ketones with α‐heteroatoms. The conditions can be employed in the coupling of complex fragments, including a 20‐mer peptide fragment analog of Exendin(9–39) on solid support.  相似文献   
6.
Epicocconone 1 is a natural chromophore isolated from the fungus Epicoccum nigrum that has shown applications in proteomics and fluorescent microscopy thanks to its unique pro-fluorescence properties. The modification of the skeleton of the natural product by replacing the triene side chain by a fluorenyl scaffold can noticeably increase the fluorophore's absorption coefficient. The synthesis of the analogues of the natural product has been made possible by the use of a palladium-catalyzed carbonylation reaction, allowing the construction of the β-keto-dioxinone key intermediate. Two-photon absorption cross-section measurements of the fluorenyl epicocconone analogues show a structure dependency with values ranging from 60 to 280 GM and live cell imaging show intense staining of intracellular vesicle-like structures around the nucleus.  相似文献   
7.
This paper reports a method for label‐free single‐cell biophysical analysis of multiple cells trapped in suspension by electrokinetic forces. Tri‐dimensional pillar electrodes arranged along the width of a microfluidic chamber define actuators for single cell trapping and selective release by electrokinetic force. Moreover, a rotation can be induced on the cell in combination with a negative DEP force to retain the cell against the flow. The measurement of the rotation speed of the cell as a function of the electric field frequency define an electrorotation spectrum that allows to study the dielectric properties of the cell. The system presented here shows for the first time the simultaneous electrorotation analysis of multiple single cells in separate micro cages that can be selectively addressed to trap and/or release the cells. Chips with 39 micro‐actuators of different interelectrode distance were fabricated to study cells with different sizes. The extracted dielectric properties of Henrietta Lacks, human embryonic kidney 293, and human immortalized T lymphocytes cells were found in agreements with previous findings. Moreover, the membrane capacitance of M17 neuroblastoma cells was investigated and found to fall in in the range of 7.49 ± 0.39 mF/m2.  相似文献   
8.
A route to the synthesis of novel 5,7-diazapentacenes and some preliminary studies on their properties is reported. A single crystal X-ray diffraction study of the dihexyl derivative showed it had formed a dimer during the analysis. The materials possess lower lying frontier orbitals than pentacene and may have potential applications in organic electronic devices. This synthetic method may be applicable to the synthesis of other azaacenes.  相似文献   
9.
In this study, synthesis, structural characterization, molecular docking studies, and antiproliferative effects in four different cell lines of several novel 16-arylidene-4-azaandrost-5-ene compounds are reported. These compounds were prepared by oxidative cleavage of the enone system of androstenedione followed by an azacyclization reaction and an aldol condensation with various aldehydes at C16. In the androgen-dependent LNCaP cells, the most relevant antiproliferative effects were observed with the 16-phenyl, 16-p-tolyl, and 16-p-nitrophenyl derivatives. Compound 16E-[(4-methylphenyl)methylidene]-4-azaandrost-5-ene-3,17-dione was the most potent in these cells (IC50 = 28.28 μM), having lower antiproliferative effects in the androgen-independent PC-3 cells (IC50 = 45.31 μM). In addition, an interesting selectivity toward cancer cell lines was found for all compounds because a generally low cytotoxicity was detected in healthy human fibroblasts. Furthermore, the 16-p-tolylazaandrostene steroid induced a reduction of viability in LNCaP cells similar to that observed with finasteride, a clinically used 5α-reductase inhibitor. Moreover, molecular docking studies predicted that these 4-azaandrostene derivatives can interact with 5β-reductase, which has a high level of similarity to 5α-reductase enzyme, and with other common targets of steroidal drugs, particularly the enzyme 17α-hydroxylase/17,20-lyase.  相似文献   
10.
Dynamic assembly of macromolecules in biological systems is one of the fundamental processes that facilitates life. Although such assembly most commonly uses noncovalent interactions, a set of dynamic reactions involving reversible covalent bonding is actively being exploited for the design of functional materials, bottom‐up assembly, and molecular machines. This Minireview highlights recent implementations and advancements in the area of tunable orthogonal reversible covalent (TORC) bonds for these purposes, and provides an outlook for their expansion, including the development of synthetically encoded polynucleotide mimics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号