首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
化学   23篇
数学   2篇
物理学   14篇
  2020年   1篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2011年   10篇
  2010年   3篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
The nucleation of martensite in alloys is hindered by a free energy nucleation barrier, hence comprising contributions of the potential energy and the entropy. The leading effect is commonly attributed to the potential energy barrier due to strain fields. In this contribution, we investigate the nature of the entropic barrier by means of molecular dynamics (MD) simulations. We study a transformation process of an undercooled single crystal and examine two nucleation events observed under adiabatic conditions using vibrational mode analysis of the atomic trajectories. Our analysis shows that martensitic nucleations are indicated by transit from a state of uncorrelated into a state of correlated atomic motions. This correlation process is built up locally by a small group of atoms even before the product lattice can be recognized morphologically and it produces vibrational ‘soft’ modes along transformation paths. Phase space analyses unveil that the correlation process is characterized by narrow domains – ‘nucleation channels’ – the atomic trajectories have to pass, connecting the phase space domains of the parent and the product lattice. For a successful nucleation event, the nucleus atoms have to pass this channel collectively, which stochastically represents a rare event. Thermal fluctuations prevent finding the channel at elevated temperature and give rise for entropic stabilization of the parent phase. This ‘entropic nucleation barrier’ is reduced in the undercooled state but still effective, thus preventing the parent phase from collapsing into the product. The entropic barrier may be interpreted as the probability of a group of atoms to simultaneously pass the nucleation channel. Such group then represents a nucleus.  相似文献   
2.
3.
4.
Targeted delivery of magnetic iron oxide nanoparticles (IONPs) to a specific tissue can be achieved by conjugation with particular biological ligands on an appropriately functionalized IONP surface. To take best advantage of the unique magnetic properties of IONPs and to maximize their blood half-life, thin, strongly bonded, functionalized coatings are required. The work reported herein demonstrates the successful application of phosphonate-anchored self-assembled monolayers (SAMs) as ultrathin coatings for such particles. It also describes a new chemical approach to the anchoring of antibodies on the surface of SAM-coated IONPs (using nucleophilic aromatic substitution). This anchoring strategy results in stable, nonhydrolyzable, covalent attachment and allows the reactivity of the particles toward antibody binding to be activated in situ, such that prior to the activation the modified surface is stable for long-term storage. While the SAMs do not have the well-packed crystallinity of other such monolayers, their structure was studied using smooth model substrates based on an iron oxide layer on a double-side polished silicon wafer. In this way, atomic force microscopy, ellipsometry, and contact angle goniometry (tools that could not be applied to the nanoparticles' surfaces) could contribute to the determination of their monomolecular thickness and uniformity. Finally, the successful conjugation of IgG antibodies to the SAM-coated IONPs such that the antibodies retain their biological activity is verified by their complexation to a secondary fluorescent antibody.  相似文献   
5.
We study the stability of network communication after removal of a fraction q=1-p of links under the assumption that communication is effective only if the shortest path between nodes i and j after removal is shorter than al(ij)(a> or =1) where l(ij) is the shortest path before removal. For a large class of networks, we find analytically and numerically a new percolation transition at p(c)=(kappa(0)-1)((1-a)/a), where kappa(0) [triple bond] / and k is the node degree. Above p(c), order N nodes can communicate within the limited path length al(ij), while below p(c), N(delta) (delta<1) nodes can communicate. We expect our results to influence network design, routing algorithms, and immunization strategies, where short paths are most relevant.  相似文献   
6.
Previous spin echo experiments at equilibrium polarizations in 3He- 4He mixtures have confirmed the prediction of zero temperature polarization-induced spin wave damping in Fermi liquids. We have measured the damping of spin waves in dilute 3He, spin polarized by a 4He circulating dilution refrigerator. The maximum polarization is almost a factor of 5 higher than the equilibrium polarization in a magnetic field of 10.54 T at temperatures between 10 and 25 mK. The spin wave damping is much smaller than expected on the basis of the spin echo experiments and shows that the existence of polarization-induced spin wave damping is an open question.  相似文献   
7.
Signatures of the non-Abelian statistics of quasiparticles in the ν=5/2 quantum Hall state are predicted to be present in the current-voltage characteristics of tunneling through one or two quantum Hall puddles of Landau filling ν(a) embedded in a bulk of filling ν(b) with (ν(a),ν(b))=(2,5/2) and (ν(a),ν(b))=(5/2,2).  相似文献   
8.
9.

Indium tin oxide (ITO) is the most commonly used transparent conducting substance. It has been used in numerous applications such as light-emitting diodes. In most applications and studies, the ITO surface is further coated with additional layers. The interface between the ITO and the coating is of utmost importance since it affects the physical and chemical properties of the final device. Improving the adhesion between ITO and a coating layer can be achieved by applying a “molecular adhesive” as an inter-phasing molecular layer. In this study, we used 3-(trimethoxysilyl)propyl methacrylate as a “molecule adhesive” for better connection between ITO and a polymethacrylate layer. The samples were studied by electrochemistry, contact angle goniometry, atomic force microscopy, and nano scratch microscopy. These studies clearly show that a simple silanization process formed a thin molecular adhesive layer, which did not influence the physical and chemical properties of the final coated electrode and at the same time increased significantly the adhesion between the ITO and the polymethacrylate coating.

  相似文献   
10.
Semi-empirical equations of state (EOS) are used for interpolation and extrapolation of experimental data and/or electronic structure calculations. For calculation of phase equilibria, it is preferable to use an explicit Gibbs free energy EOS, that is, to express the Gibbs free energy directly as a function of the pressure and temperature. Existing explicit Gibbs free energy EOS formulations often give unphysical predictions at high pressures. The origins of these problems are internal inconsistencies and uncontrolled extrapolations. A set of conditions is put forward, that should be fulfilled by semi-empirical EOS formulations in order to constrain them to known physical behaviour, e.g., to the Thomas-Fermi and quasi-harmonic models at high pressures. A new alternative integration path is devised that eliminates the need for the problematic extrapolation of the heat capacity to high temperatures at low pressures. Based on these developments, a new explicit Gibbs free energy EOS is formulated which is suitable for computational applications. The new EOS may be fitted to represent the thermophysical properties of solids with a reasonably small number of adjustable parameters. A sample application for MgO is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号