首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3313篇
  免费   98篇
  国内免费   11篇
化学   1870篇
晶体学   20篇
力学   74篇
数学   517篇
物理学   941篇
  2023年   22篇
  2021年   23篇
  2020年   45篇
  2019年   48篇
  2018年   32篇
  2017年   27篇
  2016年   65篇
  2015年   75篇
  2014年   69篇
  2013年   136篇
  2012年   132篇
  2011年   149篇
  2010年   96篇
  2009年   114篇
  2008年   161篇
  2007年   152篇
  2006年   129篇
  2005年   157篇
  2004年   102篇
  2003年   113篇
  2002年   78篇
  2001年   52篇
  2000年   47篇
  1999年   35篇
  1998年   22篇
  1997年   35篇
  1996年   46篇
  1995年   48篇
  1994年   55篇
  1993年   69篇
  1992年   66篇
  1991年   42篇
  1990年   44篇
  1989年   38篇
  1988年   34篇
  1987年   43篇
  1986年   37篇
  1985年   39篇
  1984年   43篇
  1983年   34篇
  1982年   36篇
  1981年   41篇
  1980年   39篇
  1979年   37篇
  1978年   32篇
  1977年   41篇
  1976年   45篇
  1974年   25篇
  1973年   36篇
  1970年   24篇
排序方式: 共有3422条查询结果,搜索用时 15 毫秒
1.
Though polynorbornene synthesized by ring-opening metathesis polymerization has an intrinsically all-cis configuration of the cyclopentylene backbone rings, a fraction of these rings can be epimerized to the trans configuration during hydrogenation over suitable catalysts. By varying the method of hydrogenation, semicrystalline hydrogenated polynorbornenes (hPNs) with trans levels between 0 and 36% were obtained. With increasing trans content, the glass transition temperature, melting point, and enthalpy of melting decrease modestly. By contrast, the temperature at which the hPN crystal transitions into a rotationally disordered polymorph varies strongly with trans content, ranging from 126 °C (all-cis) to 71 °C at 27% trans; at trans contents of 34% and above, no rotationally-ordered phase is observed at any temperature. The room-temperature Young's modulus shows no dependence on trans content, while the yield stress drops by 20% at 1% trans content and slowly decreases further with additional epimerization. The temperature dependence of the Young's modulus differs for trans-containing versus all-cis polymers, while the temperature dependence of the yield stress is set by the polymorph type (rotationally ordered vs. disordered).  相似文献   
2.
3.
4.
The mechanism of lithium insertion that occurs in an iron oxyfluoride sample with a hexagonal–tungsten–bronze (HTB)-type structure was investigated by the pair distribution function. This study reveals that upon lithiation, the HTB framework collapses to yield disordered rutile and rock salt phases followed by a conversion reaction of the fluoride phase toward lithium fluoride and nanometer-sized metallic iron. The occurrence of anionic vacancies in the pristine framework was shown to strongly impact the electrochemical activity, that is, the reversible capacity scales with the content of anionic vacancies. Similar to FeOF-type electrodes, upon de-lithiation, a disordered rutile phase forms, showing that the anionic chemistry dictates the atomic arrangement of the re-oxidized phase. Finally, it was shown that the nanoscaling and structural rearrangement induced by the conversion reaction allow the in situ formation of new electrode materials with enhanced electrochemical properties.  相似文献   
5.
Atomic-scale processes at electrode surfaces in liquid electrolytes are central elemental steps of electrochemical reactions. Detailed insights into the structure of these interfaces can be obtained with in situ scanning tunnelling and atomic force microscopy. By increasing the time resolution of these methods into the millisecond range, highly dynamic processes at electrode surfaces become directly observable. This review gives an overview of in situ studies with video-rate scanning probe microscopy techniques. Firstly, quantitative investigations into the dynamic behaviour of individual adsorbed atoms and molecules are described. These reveal a complex dependence of adsorbate surface diffusion on potential and co-adsorbed species and provide data on adsorbate–adsorbate and adsorbate–substrate interactions in a liquid environment. Secondly, results on collective dynamic phenomena are discussed, such as molecular self-assembly, the dynamics of nanoscale structures, nucleation and growth, and surface restructuring due to phase-formation processes.  相似文献   
6.
7.
In this work, the change of reactivity induced by the introduction of two para-ethynyl substituents (CCSi(iPr)3 or CCH) to the organic electron-donor 1,2,4,5-tetrakis(tetramethylguanidino)-benzene is evaluated. The redox-properties and redox-state dependent fluorescence are evaluated, and dinuclear CuI and CuII complexes synthesized. The Lewis-acidic B(C6F5)3 substitutes the proton of the ethynyl −CCH groups to give new anionic −CCB(C6F5)3 substituents, leading eventually to a novel dianionic strong electron donor in its diprotonated form. Its two-electron oxidation with dioxygen in the presence of a copper catalyst yields the first redox-active guanidine that is neutral (instead of cationic) in its oxidized form.  相似文献   
8.
9.
Hydrogenated polynorbornene (hPN) synthesized by ring‐opening metathesis polymerization (ROMP) exhibits a thermoreversible change in crystal polymorph at a temperature T cc below its melting point, T m. The polymorphic transition corresponds to a sharp increase in rotational disorder around the chain axis as the temperature is increased above T cc. Saturation of ROMP polynorbornene (PN) to hPN can be achieved through both catalytic and noncatalytic approaches. Here, three different hydrogenation routes were employed on the same precursor polymer: catalytic routes over either supported Pd0 or a Ni/Al complex, and noncatalytic saturation with diimide. The different hydrogenation routes result in hPNs with varying degrees of epimerization of the cyclopentylene ring (from cis to trans); these epimerized units are included in the hPN crystals. The crystal structure of the rotationally ordered hPN polymorph, observed below T cc, changes sharply at low levels of epimerization and then is weakly influenced by further increases in trans content. The stability of the rotationally ordered hPN polymorph decreases with increasing epimerization, as reflected in a reduction of T cc from 134 °C to 92 °C at 22% epimerization. T cc is less affected by epimerization than by the inclusion of a similar content of 5‐methylnorbornene units, reflecting the smaller size of the trans defect. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1188–1195  相似文献   
10.
Pulsed EPR dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling and thus the distance between electron-spin centers. To date, PDS measurements to metal centers were limited to ions that adhere to the high-field approximation. Here, the PDS methodology is extended to cases where the high-field approximation breaks down on the example of the high-spin Fe3+/nitroxide spin-pair. First, the theory developed by Maryasov et al. (Appl. Magn. Reson. 2006 , 30, 683–702) was adapted to derive equations for the dipolar coupling constant, which revealed that the dipolar spectrum does not only depend on the length and orientation of the interspin distance vector with respect to the applied magnetic field but also on its orientation to the effective g-tensor of the Fe3+ ion. Then, it is shown on a model system and a heme protein that a PDS method called relaxation-induced dipolar modulation enhancement (RIDME) is well-suited to measuring such spectra and that the experimentally obtained dipolar spectra are in full agreement with the derived equations. Finally, a RIDME data analysis procedure was developed, which facilitates the determination of distance and angular distributions from the RIDME data. Thus, this study enables the application of PDS to for example, the highly relevant class of high-spin Fe3+ heme proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号