首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   11篇
化学   61篇
力学   1篇
数学   8篇
物理学   7篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   10篇
  2015年   7篇
  2014年   11篇
  2013年   13篇
  2012年   2篇
  2011年   4篇
  2009年   1篇
  2007年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
To be used successfully in continuous reactor systems, enzymes must either be retained using filtration membranes or immobilized on a solid component of the reactor. Whereas the first approach requires large amounts of energy, the second approach is limited by the low temporal stability of enzymes under operational conditions. To circumvent these major stumbling blocks, we have developed a strategy that enables the reversible supramolecular immobilization of bioactive enzyme–polymer conjugates at the surface of filtration membranes. The polymer is produced through a reversible addition–fragmentation transfer method; it contains multiple adamantyl moieties that are used to bind the resulting conjugate at the surface of the membrane which has surface‐immobilized cyclodextrin macrocycles. This supramolecular modification is stable under operational conditions and allows for efficient biocatalysis, and can be reversed by competitive host–guest interactions.  相似文献   
2.
Synthetic polymers represent a modifiable class of materials that can serve as adjuvants to address challenges in numerous biomedical and medicinal chemistry applications including the delivery of siRNA. Polymer‐based therapeutics offer unique challenges in both synthesis and characterization as compared to small molecule therapeutics. The ability to control the structure of the polymer is critical in creating a therapeutic. Reported herein, are batch and flow polymerization processes to produce amphiphilic terpolymers through a Lewis acid BF3OEt2‐catalyzed polymerization. These processes focus on controlling reaction variables, which affect polymer structure in this rapid, exothermic, nonliving cationic polymerization. In addition to analytical characterization of the polymers, the in vivo activity of the polymer‐siRNA conjugates is also highlighted—demonstrating that the method of synthesis does affect the in vivo activity of the resulting polymer conjugate. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1119–1129  相似文献   
3.
In this work, a magnetic hybrid dichromate nanocomposite with triphenylphosphine surface modified superparamagnetic iron oxide nanoparticles (SPIONs) as a recyclable nanocatalyst was designed, prepared and characterized by Fourier transform infrared spectroscopy (FT‐IR) spectra, X‐ray diffraction (XRD) pattern analysis, vibrating sample magnetometer (VSM) curves, X‐ray fluorescence (XRF) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images and dynamic light scattering (DLS) analysis. Then, it was used in a green and efficient procedure for one‐pot multicomponent synthesis of polyhydroquinoline derivatives by the condensation of aldehydes, dimedone or 1,3‐cyclohexadione, ethyl acetoacetate and ammonium acetate. This protocol includes some new and exceptional advantages such as short reaction times, low catalyst loading, high yields, solvent‐free and room temperature conditions, easy separation and reusability of the catalyst.  相似文献   
4.
5.
Well‐defined ABC triblock copolymers based on two hydrophilic blocks, A and C, and a hydrophobic block B are synthesized and their self‐assembly behavior is investigated. Interestingly, at the same solvent, concentration, pH, and temperature, different shape micelles are observed, spherical and worm‐like micelles, depending on the preparation method. Specifically, spherical micelles are observed with bulk rehydration while both spherical and worm‐like micelles are observed with film rehydration.

  相似文献   

6.
Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H) as a new nanoporous solid acid catalyst was applied in the green one-pot synthesis of spiro[indole-tetrahydropyrano(2,3-d)pyrimidine] derivatives via three-component reaction of isatins, malononitrile or cyanoacetic esters and barbituric acids under solvent-free conditions. SBA-Pr-SO3H was proved to be an efficient heterogeneous nanoporous solid acid catalyst with a pore size of 6 nm, which could be easily handled and removed from the reaction mixture by simple filtration and can be recovered and reused several times without any loss of activity. The advantages of this methodology are high product yields, being environmentally benign, short reaction times, and easy handling.  相似文献   
7.
Sulfonic acid functionalized SBA‐15 (SBA‐Pr‐SO3H) as a new nanoporous solid acid catalyst was applied in the green one‐pot synthesis of spirooxindole‐4H‐pyrans via condensation of isatins, malononitrile or methyl cyanoacetate or ethyl cyanoacetate, and 4‐hydroxycoumarin in water solvent. SBA‐Pr‐SO3H was proved to be an efficient heterogeneous nanoporous solid acid catalyst with a pore size of 6 nm that could be easily handled and removed from the reaction mixture by simple filtration and can be recovered and reused for several times without any loss of activity. The significant merits of present methodology are its simplicity, short reaction time, good yields, and environmentally benign mild reaction condition as water was used as a green solvent.  相似文献   
8.
We present some iterative methods of different convergence orders for solving systems of nonlinear equations. Their computational complexities are studies. Then, we introduce the method of finite difference for solving stochastic differential equations of Itô-type. Subsequently, our multi-step iterative schemes are employed in this procedure. Several experiments are finally taken into account to show that the presented approach and methods work well.  相似文献   
9.
10.
Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine   总被引:1,自引:0,他引:1  
Poly(amidoamine) (PAMAM) dendrimers are a novel class of spherical, well-designed branching polymers with interior cavities and abundant terminal groups on the surface which can form stable complexes with drugs, plasmid DNA, oligonucleotides, and antibodies. Amine‐terminated PAMAM dendrimers are able to solubilize different families of hydrophobic drugs, but the cationic charges on dendrimer surface may disturb the cell membrane. Therefore, surface modification by PEGylation, acetylation, glycosylation, and amino acid functionalization is a convenient strategy to neutralize the peripheral amine groups and improve dendrimer biocompatibility. Anticancer agents can be either encapsulated in or conjugated to dendrimer and be delivered to the tumor via enhanced permeability and retention (EPR) effect of the nanoparticle and/or with the help of a targeting moiety such as antibody, peptides, vitamins, and hormones. Biodegradability, non-toxicity, non-immunogenicity, and multifunctionality of PAMAM dendrimer are the key factors which facilitate steady increase of its application in drug delivery, gene transfection, tumor therapy, and diagnostics applications with precision and selectivity. This review deals with the major topics of PAMAM dendrimers including structure, synthesis, toxicity, surface modification, and also possible new applications of these spherical polymers in biomedical fields as dendrimer-based nanomedicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号