首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2347篇
  免费   135篇
  国内免费   14篇
化学   1674篇
晶体学   47篇
力学   95篇
综合类   2篇
数学   236篇
物理学   442篇
  2023年   34篇
  2022年   44篇
  2021年   127篇
  2020年   69篇
  2019年   95篇
  2018年   87篇
  2017年   76篇
  2016年   139篇
  2015年   96篇
  2014年   118篇
  2013年   189篇
  2012年   198篇
  2011年   201篇
  2010年   120篇
  2009年   97篇
  2008年   106篇
  2007年   120篇
  2006年   103篇
  2005年   99篇
  2004年   61篇
  2003年   58篇
  2002年   37篇
  2001年   14篇
  2000年   5篇
  1999年   7篇
  1998年   11篇
  1997年   8篇
  1996年   17篇
  1995年   13篇
  1994年   9篇
  1993年   12篇
  1992年   9篇
  1991年   3篇
  1990年   3篇
  1989年   10篇
  1988年   6篇
  1987年   7篇
  1986年   3篇
  1985年   12篇
  1984年   5篇
  1983年   4篇
  1982年   11篇
  1981年   15篇
  1980年   8篇
  1979年   7篇
  1978年   3篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1964年   2篇
排序方式: 共有2496条查询结果,搜索用时 15 毫秒
1.
The determination of nonlinearities near the band edge of organic and polymeric electro-optic(EO)materials is important from the viewpoint of molecular nonlinear optics(NLO)and photonic device applications.Based on transmission-mode Stark effect electromodulation(EM)spectroscopy,we study the electric-field-induced changes in optical absorption and refraction of newly developed EO polymers from the visible to near-infrared(NIR)wavelengths and report record-high near-band-edge complex EO effects from poled thin films.Values ofΔn andΔk up to 10-3 and 10-2 are found at an applied electric field of 2.0×105-3.0×105V/cm.The study of linear optical properties of poled films by spectroscopic ellipsometry shows large polinginduced birefringence and a nearly two-fold increase in the extinction coefficients at the extraordinary polarization.Through the Kramers-Kronig analysis,we obtained the real and imaginary second-order nonlinear coefficients up to~3,500 and~5,600 pm/V,respectively,which are believed to be the highest NLO coefficients of poled polymers through the resonance enhancement.Our approach goes beyond the previous works,applicable only to several discrete wavelengths,to a full-spectral analysis with independent verification of slab waveguide measurements.By considering both the electroabsorption and electrorefraction effects,our study overcomes the limitation of the classic qualitative two-level model and provides a quantitative understanding of near-resonance optical nonlinearities of organic EO materials.It can inspire the exploration of high-speed,absorptive,or phase-shifting light-modulators using EO polymers for on-chip applications.  相似文献   
2.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
3.
Flat plates, both single and in tandem or side by side arrangement, are widely used in many engineering applications. Despite vast investigations of the flow structures and wakes downstream of these bluff bodies, this unsteady phenomenon yet remains a fundamental issue in many industrial applications. This paper reviews the state of the art concerning the flow over flat plates in different arrangements focusing on plates normal to the flow. Turbulent wake regions are discussed for the flat plates in side by side or tandem arrangement. Numerical studies are reviewed with emphasis on the realized turbulent models. The effect of the chosen turbulence model on the prediction of the wake region is discussed.  相似文献   
4.
Journal of Thermal Analysis and Calorimetry - In this investigation, a series of experiments were conducted to explore the effects of liquefied petroleum gas (LPG) mixture of 60% propane and 40%...  相似文献   
5.
6.
Well‐defined A3B‐, A2B2‐, and AB3‐type 4‐miktoarm star copolymers (Mn = 10,500–16,200, Mw/Mn = 1.16–1.18) consisting of poly(ethylene oxide) (PEO) and polymethacrylate bearing an azobenzene mesogen (PMA(Az)) as the arms and cyclotetrasiloxane as the core unit were synthesized using a combined route composed of a thiol‐ene click reaction and atom transfer radical polymerization. Microphase‐separated structures of the star copolymers in thin films with a thickness of approximately 100 nm were investigated by GISAXS and TEM. The A3B‐type star‐(PEO)3[PMA(Az)]1 copolymer formed a more highly ordered PEO cylinder array with perpendicular alignment in the PMA(Az) matrix than that of the corresponding linear‐type block copolymer. The center‐to‐center distance of the PEO cylinders and the cylinder diameter were 13 and 4 nm, respectively. The highly ordered star‐(PEO)3[PMA(Az)]1 thin film was directly transferred to a siloxane‐based nanodot array by oxygen reactive ion etching. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1175–1188  相似文献   
7.
8.
Porous shape memory polymers (SMPs) exhibit geometric and volumetric shape change when actuated by an external stimulus and can be fabricated as foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. These materials have applications in multiple industries such as textiles, biomedical devices, tissue engineering, and aerospace. This review article examines recent developments in porous SMPs, with a focus on fabrication methods, methods of characterization, modes of actuation, and applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1300–1318  相似文献   
9.
An in situ ultrasonic diagnostic technique was applied to monitoring the hydrothermal synthesis of zeolite A and X of clear solution extracted from alkaline fused class F coal fly ash. In this context, kinetic evaluations based on in situ ultrasonic diagnostic data displayed an important approach to study the synthesis process. The impact on nucleation and crystal growth was demonstrated by variation of a few relevant parameters such as reaction temperature, amount of water, Na2O and ageing time, including templated colloidal synthesis mixtures as model solution. To complement the kinetic analysis, ex situ techniques such as ICP, X-ray diffraction, scanning electron microscopy and dynamic light scattering were used to investigate liquid phase and reaction products extracted from the reaction mixture during the synthesis.  相似文献   
10.
Since few examples of 10,11‐didehydrogenated (3‐ethynyl) cinchona alkaloids have been utilized as organocatalysts in asymmetric reaction, we synthesized 10,11‐didehydrogenated cinchonidine. The 3‐vinyl group of cinchonidine was transformed into a 3‐ethynyl functionality. Based on the resulting 10,11‐didehydrogenated cinchonidine, the corresponding quaternary ammonium salt and its dimers were prepared. The ion‐exchange reaction between the quaternary ammonium salt and sodium sulfonate produced the quaternary ammonium sulfonate as a stable ionic compound. Chiral ionic polymers were then synthesized by the ion‐exchange polymerization of the 10,11‐didehydrogenated cinchonidinium salt dimer and a disulfonate. The chiral ionic polymers were found to be capable of efficiently catalyzing the asymmetric alkylation of N‐(diphenylmethylene)glycine tert‐butyl ester. The enantioselectivities obtained with the polymeric catalysts were higher than those obtained with the corresponding monomeric catalyst. Dimers of 10,11‐didehydrogenated cinchonidinium salts were prepared. Treatment of the dimer with disodium disulfonate gave the chiral ionic polymers, which showed high catalytic activity in asymmetric benzylation of N‐(diphenylmethylen)glycine tert‐butyl ester. The polymeric catalysts were reused several times without the loss of catalytic activity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 621–627  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号