首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4321篇
  免费   93篇
  国内免费   25篇
化学   3200篇
晶体学   34篇
力学   99篇
数学   661篇
物理学   445篇
  2021年   23篇
  2020年   48篇
  2019年   46篇
  2018年   24篇
  2017年   25篇
  2016年   65篇
  2015年   64篇
  2014年   70篇
  2013年   190篇
  2012年   202篇
  2011年   273篇
  2010年   127篇
  2009年   100篇
  2008年   234篇
  2007年   290篇
  2006年   278篇
  2005年   269篇
  2004年   202篇
  2003年   198篇
  2002年   176篇
  2001年   34篇
  2000年   28篇
  1999年   37篇
  1998年   41篇
  1997年   38篇
  1996年   82篇
  1995年   64篇
  1994年   48篇
  1993年   55篇
  1992年   47篇
  1991年   29篇
  1990年   41篇
  1989年   38篇
  1988年   41篇
  1987年   39篇
  1986年   43篇
  1985年   68篇
  1984年   79篇
  1983年   37篇
  1982年   65篇
  1981年   53篇
  1980年   55篇
  1979年   56篇
  1978年   53篇
  1977年   48篇
  1976年   43篇
  1975年   54篇
  1974年   50篇
  1973年   31篇
  1971年   18篇
排序方式: 共有4439条查询结果,搜索用时 15 毫秒
1.

A Savitzky–Golay filtering for smoothing and peak search written in Python is presented in this paper alongside its applications in the list-mode digital data acquisition dual gamma–gamma coincidence bismuth germanate (BGO) detector. The study has demonstrated that the software provides a reliable and effective way to quantify trace amounts of 22Na and 7Be in aerosol samples collected at Resolute Bay, Canada with a critical limit of 3 mBq and 5 Bq respectively for a 20 h counting interval, which are believed to be the inherent limitations of the dual-BGO system.

  相似文献   
2.
The utility of the quartz crystal microbalance (QCM) as a high‐frequency rheometer operating at 15 MHz was demonstrated. High‐frequency data obtained from a series of rubbery materials were compared with results obtained from traditional dynamic mechanical analysis (DMA) at much lower frequencies. The high‐frequency data enable meaningful shift factors to be obtained at temperatures much further above glass‐transition temperature (T g) than would otherwise be possible, giving a more complete picture of the temperature dependence of the viscoelastic properties. The QCM can also be used to quantify mass uptake and changes in viscoelastic properties during sample oxidation. The viscoelastic response spanning the full range of behaviors from the rubber to glassy regimes was found to fit well with a six‐element model consisting of three power‐law springpot elements. One of these elements is particularly sensitive to the behavior in the transition regime where the phase angle is maximized. The value of this quantity is obtained from the maximum phase angle, which can be obtained from a temperature sweep at fixed frequency, proving a means for more detailed frequency‐dependent rheometric information to be obtained from a fixed‐frequency measurement at a range of temperatures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1246–1254  相似文献   
3.
Nonlinear Dynamics - Vibro-impact drilling has shown huge potential of delivering better rate of penetration, improved tools lifespan and better borehole stability. However, being resonantly...  相似文献   
4.
Extracellular vesicles, including microvesicles and exosomes, are lipidic membrane‐derived vesicles that are secreted by most cell types. Exosomes, one class of these vesicles that are 30–100 nm in diameter, hold a great deal of promise in disease diagnostics, as they display the same protein biomarkers as their originating cell. For exosomes to become useful in disease diagnostics, and as burgeoning drug delivery platforms, they must be isolated efficiently and effectively without compromising their structure. Most current exosome isolation methods have practical problems including being too time‐consuming and labor intensive, destructive to the exosomes, or too costly for use in clinical settings. To this end, this study examines the use of poly(ethylene terephthalate) (PET) capillary‐channeled polymer (C‐CP) fibers in a hydrophobic interaction chromatography (HIC) protocol to isolate exosomes from diverse matrices of practical concern. Initial results demonstrate the ability to isolate extracellular vesicles enriched in exosomes with comparable yields and size distributions on a much faster time scale when compared to traditional isolation methods. As a demonstration of the potential analytical utility of the approach, extracellular vesicle recoveries from cell culture milieu and a mock urine matrix are presented. The potential for scalable separations covering submilliliter spin‐down columns to the preparative scale is anticipated.  相似文献   
5.
A series of new tetrakis(dialkoxyphenyl) dicyanotetraoxapentacene derivatives ( 1 a – c ) were prepared by reaction of the appropriate terphenyl diols with tetrafluoroterephthalonitrile in good yields. Compounds 1 b and 1 c , which bear hexyloxy and decyloxy side chains, exhibited columnar hexagonal mesophases, as shown by polarized optical microscopy, variable-temperature powder X-ray diffraction, and differential scanning calorimetry. Single-crystal X-ray diffraction of methoxy-substituted 1 a revealed that the dicyanotetraoxapentacene core is highly planar, consistent with the notion that these molecules are able to stack in columnar mesophases. A detailed photophysical characterization showed that these compounds exhibit aggregation-induced emission in solution, emission in nonpolar solvents, weak emission in polar solvents, and strong emission in the solid state both as powder and in thin films. These observations are consistent with a weakly emissive charge-transfer state in polar solvents and a more highly emissive locally excited state in nonpolar solvents.  相似文献   
6.
A polyurea macromer (PUM) was synthesized and dispersed in basic conditions to form self‐assembled nanoparticles (<20 nm dispersions, up to 30 wt % aq. soln.). These nanoparticles enabled surfactant‐free emulsion polymerization to form hybrid polyurea‐acrylic particles despite the absence of a measureable water‐soluble fraction. The Tg of the starting PUM material was a strong function of the PUM's extent of neutralization and hydration (varying between 100 °C and >175 °C) due to changes in hydrogen and ionic bonding. Two separate hybrid polyurea‐acrylic emulsion systems were prepared: one by direct polymerization of (meth)acrylic monomers in the presence of the nanodispersion and a second by a physical blend of PUM nanodispersion with an acrylic latex control. The direct polymerization method resulted in a hybrid emulsion particle size that developed by a mechanism resembling conventional emulsion polymerization and was unlike that described for seeded polyurethane dispersion systems. Film hardness was shown to increase with increasing coating thickness for the hybrid film prepared by direct polymerization. The resulting mechanical properties could be explained by applying mechanical models for a composite foam structure. These results were unprecedented for normal elastomer films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1373–1388  相似文献   
7.
Untargeted analyses in mass spectrometry imaging produce hundreds of ion images representing spatial distributions of biomolecules in biological tissues. Due to the large diversity of ions detected in untargeted analyses, normalization standards are often difficult to implement to account for pixel-to-pixel variability in imaging studies. Many normalization strategies exist to account for this variability, but they largely do not improve image quality. In this study, we present a new approach for improving image quality and visualization of tissue features by application of sequential paired covariance (SPC). This approach was demonstrated using previously published tissue datasets such as rat brain and human prostate with different biomolecules like metabolites and N-linked glycans. Data transformation by SPC improved ion images resulting in increased smoothing of biological features compared with commonly used normalization approaches.  相似文献   
8.
A leading-edge suction parameter (LESP) that is derived from potential flow theory as a measure of suction at the airfoil leading edge is used to study initiation of leading-edge vortex (LEV) formation in this article. The LESP hypothesis is presented, which states that LEV formation in unsteady flows for specified airfoil shape and Reynolds number occurs at a critical constant value of LESP, regardless of motion kinematics. This hypothesis is tested and validated against a large set of data from CFD and experimental studies of flows with LEV formation. The hypothesis is seen to hold except in cases with slow-rate kinematics which evince significant trailing-edge separation (which refers here to separation leading to reversed flow on the aft portion of the upper surface), thereby establishing the envelope of validity. The implication is that the critical LESP value for an airfoil–Reynolds number combination may be calibrated using CFD or experiment for just one motion and then employed to predict LEV initiation for any other (fast-rate) motion. It is also shown that the LESP concept may be used in an inverse mode to generate motion kinematics that would either prevent LEV formation or trigger the same as per aerodynamic requirements.  相似文献   
9.
The combination of potassium tert-butoxide and triethylsilane is unusual because it generates multiple different types of reactive intermediates simultaneously that provide access to (i) silyl radical reactions, (ii) hydrogen atom transfer reactions to closed shell molecules and to radicals, (iii) electron transfer reductions and (iv) hydride ion chemistry, giving scope for unprecedented outcomes. Until now, reactions with this reagent pair have generally been explained by reference to one of the intermediates, but we now highlight the interplay and competition between them.

The combination of potassium tert-butoxide and triethylsilane provides simultaneous access to multiple reactive intermediates, radicals, H-atom donors, hydride donors and electron donors, giving scope for unprecedented reaction outcomes.  相似文献   
10.
We present a theoretical and experimental study of the structure and nuclear magnetic resonance (NMR) parameters of the pentacarbonyltungsten complexes of η1‐2‐(trimethylstannyl)‐4,5‐dimethylphosphinine, η2‐norbornene, and imidazolidine‐2‐thione. The three complexes have a pseudo‐octahedral molecular structure with the six ligands bonded to the tungsten atom. The η1‐2‐(trimethylstannyl)‐4,5‐dimethylphosphinine‐pentacarbonyl tungsten complex was synthesized for the first time. For all compounds, we present four‐component relativistic calculations of the NMR parameters at the Dirac–Kohn–Sham density functional level of theory using hybrid functionals. These large‐scale relativistic calculations of NMR chemical shifts and spin–spin coupling constants were compared with available experimental data, either taken from the literature or measured in this work. The inclusion of solvent effects modeled using a conductor‐like screening model was found to improve agreement between the calculated and experimental NMR parameters, and our best estimates for the NMR parameters are generally in good agreement with available experimental results. The present work demonstrates that four‐component relativistic theory has reached a level of maturity that makes it a convenient and accurate tool for modeling and understanding chemical shifts and indirect spin–spin coupling constants of organometallic compounds containing heavy elements, for which conventional non‐relativistic theory breaks down. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号