首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   35篇
化学   523篇
晶体学   3篇
力学   7篇
数学   42篇
物理学   97篇
  2023年   7篇
  2022年   3篇
  2021年   11篇
  2020年   11篇
  2019年   17篇
  2018年   10篇
  2017年   3篇
  2016年   23篇
  2015年   21篇
  2014年   25篇
  2013年   31篇
  2012年   46篇
  2011年   54篇
  2010年   47篇
  2009年   29篇
  2008年   51篇
  2007年   46篇
  2006年   33篇
  2005年   40篇
  2004年   30篇
  2003年   29篇
  2002年   11篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
  1938年   2篇
排序方式: 共有672条查询结果,搜索用时 15 毫秒
1.
2-Iminopyrroles [HtBuL, 4-tert-butyl phenyl(pyrrol-2-ylmethylene)amine] are non-fluorescent π systems. However, they display blue fluorescence after deprotonation with alkali metal bases in the solid state and in solution at room temperature. In the solid state, the alkali metal 2-imino pyrrolates, M(tBuL), aggregate to dimers, [M(tBuL)(NCR)]2 (M=Li, R=CH3, CH(CH3)CNH2), or polymers, [M(tBuL)]n (M=Na, K). In solution (solv=CH3CN, DMSO, THF, and toluene), solvated, uncharged monomeric species M(tBuL)(solv)m with N,N′-chelated alkali metal ions are present. Due to the electron-rich pyrrolate and the electron-poor arylimino moiety, the M(tBuL) chromophore possesses a low-energy intraligand charge-transfer (ILCT) excited state. The chelated alkali cations rigidify the chromophore, restricting intramolecular motions (RIM) by the chelation-enhanced fluorescence (CHEF) effect in solution and, consequently, switch-on a blue fluorescence emission.  相似文献   
2.
Transition metal complexes with photoactive charge-transfer excited states are pervasive throughout the literature. In particular, [Ru(bpy)3]2+ (bpy=2,2′-bipyridine), with its metal-to-ligand charge-transfer emission, has been established as a key complex. Meanwhile, interest in so-called spin-flip metal-centered states has risen dramatically after the molecular ruby [Cr(ddpd)2]3+ (ddpd=N,N′-dimethyl-N,N′-dipyridin-2-yl-pyridine-2,6-diamine) led to design principles to access strong, long-lived emission from photostable chromium(III) complexes. This Review contrasts the properties of emissive charge-transfer and spin-flip states by using [Ru(bpy)3]2+ and [Cr(ddpd)2]3+ as prototypical examples. We discuss the relevant excited states, the tunability of their energy and lifetimes, and their response to external stimuli. Finally, we identify strengths and weaknesses of charge-transfer and spin-flip states in applications such as photocatalysis and circularly polarized luminescence.  相似文献   
3.
4.
5.
The reaction of ZrCl4 with oleum (65 % SO3) in the presence of Ag2SO4 at 250 °C yielded colorless single crystals of Zr(S2O7)2 [orthorhombic, Pccn, Z = 4, a = 709.08(6) pm, b = 1442.2(2) pm, c = 942.23(9) pm, V = 963.5(2) × 106 pm3]. Zr(S2O7)2 shows Zr4+ ions in an eightfold distorted square antiprismatic coordination of oxygen atoms belonging to four chelating disulfate units. Each S2O72– ion is connected to a further Zr4+ ion leading to chains according to 1[Zr(S2O7)4/2]. The same reaction at a temperature of 150 °C resulted in the formation of Ag4[Zr(S2O7)4] [monoclinic, C2/c, Z = 4, a = 1829.35(9) pm, b = 704.37(3) pm, c = 1999.1(1) pm, β = 117.844(2)°, V = 2277.6(2) × 106 pm3]. Ag4[Zr(S2O7)4] exhibits the unprecedented [Zr(S2O7)4]4– anion, in which the central Zr4+ cation is coordinated by four chelating disulfate units. Thus, in Ag4[Zr(S2O7)4] the 1[[Zr(S2O7)4/2] chains observed in Zr(S2O7)2 are formally cut into pieces by the implementation of Ag+ ions.  相似文献   
6.
Objective and Methods: We describe the insurance behaviour of subjects (n=271) who had previously taken a predictive genetic test for hereditary non-polyposis colorectal cancer (HNPCC); 31% of them were mutation positive, indicating a high risk of cancer. One year after testing, subjects were sent a questionnaire including questions about their present life and health insurance before participation in the study, and their actual and planned purchase of the insurance policies during the testing programme which compromised a pre-test counseling session, a period for reflection, the testing, and a test disclosure session. Results: Thirty percent reported that they already had a life insurance and 14% a health insurance before participating in the study. The mutation-positive subjects possessed a health insurance significantly more often than the mutation-negative individuals (21 vs. 11%, p=0.02) and similar trend was observed for life insurance (36 vs. 28%, p=0.12). Life and health insurance policies purchased just before testing was reported by 3 and 2% of the subjects, respectively. Life and health insurance policies purchased after testing were reported by 3 and <1% respectively, and planned purchase by 3 and 2%, respectively. No statistically significant differences were found between the groups defined by mutation status in reports of life or health insurance behaviour during or after the programme. Conclusion: According to self-reported data, the mutation-positive subjects did not differ from the others in the purchase of life or health insurance policies. However, the mutation-positive individuals reported that they possessed health insurance policies before entering the study more often than their counterparts.  相似文献   
7.
The development of new energy materials that can be utilized to make renewable and clean fuels from abundant and easily accessible resources is among the most challenging and demanding tasks in science today. Solar‐powered catalytic water‐splitting processes can be exploited as a source of electrons and protons to make clean renewable fuels, such as hydrogen, and in the sequestration of CO2 and its conversion into low‐carbon energy carriers. Recently, there have been tremendous efforts to build up a stand‐alone solar‐to‐fuel conversion device, the “artificial leaf”, using light and water as raw materials. An overview of the recent progress in electrochemical and photo‐electrocatalytic water splitting devices is presented, using both molecular water oxidation complexes (WOCs) and nano‐structured assemblies to develop an artificial photosynthetic system.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号