首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88050篇
  免费   1983篇
  国内免费   2313篇
化学   31920篇
晶体学   916篇
力学   7234篇
综合类   201篇
数学   33238篇
物理学   18837篇
  2023年   106篇
  2022年   155篇
  2021年   210篇
  2020年   294篇
  2019年   374篇
  2018年   10658篇
  2017年   10485篇
  2016年   6414篇
  2015年   1274篇
  2014年   831篇
  2013年   1118篇
  2012年   4642篇
  2011年   11428篇
  2010年   6456篇
  2009年   6818篇
  2008年   7499篇
  2007年   9609篇
  2006年   1072篇
  2005年   1968篇
  2004年   2079篇
  2003年   2471篇
  2002年   1463篇
  2001年   603篇
  2000年   558篇
  1999年   343篇
  1998年   343篇
  1997年   244篇
  1996年   302篇
  1995年   211篇
  1994年   157篇
  1993年   168篇
  1992年   119篇
  1991年   114篇
  1990年   95篇
  1989年   85篇
  1988年   81篇
  1987年   79篇
  1986年   72篇
  1985年   63篇
  1984年   50篇
  1983年   54篇
  1982年   48篇
  1981年   44篇
  1980年   54篇
  1979年   45篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Dahal  Raju  Kar  Indrani 《Nonlinear dynamics》2022,109(4):2831-2850
Nonlinear Dynamics - In this paper, a novel robust tracking control strategy for nonlinear unmatched uncertain systems is formulated using the event-based adaptive dynamic programming (ADP)...  相似文献   
2.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
3.
A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented. Also, a combination parameter is defined to consider the mutual effect of deformation and hysteretic energy for different types of components in different loading stages. Four reinforced concrete (RC) columns are simulated and analyzed using the nonlinear damage model. The results indicate that the damage evolution evaluated by the model agrees well with the experimental phenomenon. Furthermore, the seismic damage evolution of a six-story RC frame was analyzed, revealing four typical failure modes according to the interstory drift distribution of the structure; the damage values calculated using the nonlinear damage model agree well with the four typical failure modes.  相似文献   
4.
Measuring angles in the Euclidean plane is a well-known topic, but for general normed planes there exists a variety of different concepts. These can be of a special kind, e.g. also preserving special orthogonality types. But these concepts are no angle measures in the sense of measure theory since they are not additive. This motivates us to define a new angle measure for normed planes that is in fact a measure in the sense of measure theory. Furthermore, we look at related types of rotation and reflection.  相似文献   
5.
We analyze isolated resonance curves (IRCs) in single-degree-of-freedom systems possessing nonlinear damping. Through the combination of singularity theory and the averaging method, the onset and merging of IRCs, which coincide to isola and simple bifurcation singularities, respectively, can be analytically predicted. Numerical simulations confirm the accuracy of the analytical developments. Another important finding of this paper is that we unveil a geometrical connection between the topology of the damping force and IRCs. Specifically, we demonstrate that extremas and zeros of the damping force correspond to the appearance and merging of IRCs. Considering a damping force possessing several minima and maxima confirms the general validity of the analytical result. It also evidences a very complex scenario for which different IRCs are created, co-exist and then merge together to form a super IRC which eventually merges with the main resonance peak.  相似文献   
6.
The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.  相似文献   
7.
Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.  相似文献   
8.
We give the parameter version of a localization theorem for the Bergman metric near the boundary points of strictly pseudoconvex domains. The approximation theorem for square integrable holomorphic functions on such domains in the spirit of Graham-Kerzman is proved in the hereby paper, as well.  相似文献   
9.
10.
The paper presents an interphase cohesive zone model (CZM) incorporating stress multi-axiality devised to capture, by simplified micro-modeling, the influence of the in-plane strain and stress state in the mechanical response of the CZM. Moreover, the model is able to account for the Poisson-related effect in the interphase, which can play an important role in the modeling of heterogeneous masonry elements. From the constitutive point of view, the proposed formulation couples damage and friction by addressing a smooth transition from a quasi-brittle response to a residual frictional behavior described by a Coulomb law with unilateral contact. As in-plane stresses are accounted for, damage activation and evolution are governed by a Drucker–Prager law with linear softening. A predictor-corrector procedure based on a backward Euler scheme is detailed for integrating the nonlinear evolutive problem together with the related tangent operator which consistently linearizes the algorithmic strategy. This framework is embedded into a kinematically-enriched finite element interphase formulation incorporating stress multi-axiality. The modeling features of the resulting numerical tool are tested both at the local level, for the typical interphase point, and in meso-structural tests consisting of brick-mortar triplets, investigating the capability of the proposed model and numerical procedure to simulate the brick-mortar decohesion mechanism during confined slip tests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号