首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80733篇
  免费   429篇
  国内免费   396篇
化学   26007篇
晶体学   804篇
力学   6782篇
数学   32466篇
物理学   15499篇
  2019年   53篇
  2018年   10462篇
  2017年   10282篇
  2016年   6113篇
  2015年   893篇
  2014年   377篇
  2013年   485篇
  2012年   3900篇
  2011年   10632篇
  2010年   5729篇
  2009年   6120篇
  2008年   6710篇
  2007年   8862篇
  2006年   333篇
  2005年   1414篇
  2004年   1606篇
  2003年   2043篇
  2002年   1051篇
  2001年   260篇
  2000年   311篇
  1999年   174篇
  1998年   210篇
  1997年   183篇
  1996年   247篇
  1995年   164篇
  1994年   117篇
  1993年   138篇
  1992年   101篇
  1991年   116篇
  1990年   86篇
  1989年   103篇
  1988年   108篇
  1987年   100篇
  1986年   106篇
  1985年   97篇
  1984年   98篇
  1983年   75篇
  1982年   77篇
  1981年   81篇
  1980年   99篇
  1979年   84篇
  1978年   74篇
  1977年   54篇
  1976年   49篇
  1975年   43篇
  1973年   47篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 263 毫秒
1.
Pentafluorosulfanyl (SF5)-containing compounds and corresponding analogs are a highly valuable class of fluorine-containing building blocks owing to their unique properties. The reason for that is the set of peculiar and tremendously beneficial characteristics they can impart on molecules once introduced onto them. Despite this, their application in distinct scientific fields remains modest, given the extremely harsh reaction conditions needed to access such compounds. The recent synthetic approaches via S−F, and C−SF5 bond formation as well as the use of SF5-containing building blocks embody a “stairway-to-heaven” loophole in the synthesis of otherwise-inaccessible chemical scaffolds only a few years ago. Herein, we report and evaluate the properties of the SF5 group and analogs, by summarizing synthetic methodologies available to access them as well as following applications in material science and medicinal chemistry since 2015.  相似文献   
2.
3.
Molecular syntheses largely rely on time‐ and labour‐intensive prefunctionalization strategies. In contrast, C?H activation represents an increasingly powerful approach that avoids lengthy syntheses of prefunctionalized substrates, with great potential for drug discovery, the pharmaceutical industry, material sciences, and crop protection, among others. The enantioselective functionalization of omnipresent C?H bonds has emerged as a transformative tool for the step‐ and atom‐economical generation of chiral molecular complexity. However, this rapidly growing research area remains dominated by noble transition metals, prominently featuring toxic palladium, iridium and rhodium catalysts. Indeed, despite significant achievements, the use of inexpensive and sustainable 3d metals in asymmetric C?H activations is still clearly in its infancy. Herein, we discuss the remarkable recent progress in enantioselective transformations via organometallic C?H activation by 3d base metals up to April 2019.  相似文献   
4.
A theoretical analysis on the electric double layer formed near the surface of an infinite cylinder with an elliptical cross section and a prescribed electric potential in an ionic conductor was performed using the linearized Gouy–Chapman theory. A semi-analytical solution in terms of the Mathieu functions was obtained. The distributions of the electric potential, cations, anions, and electric field were calculated. The effects of various physical and geometric parameters were examined. The fields vary rapidly near the elliptical boundary and are nearly uniform at far field. Electric field concentrations were found at the ends of the semi-major and semi-minor axes of the ellipse. These concentrations are sensitive to the physical and geometric parameters.  相似文献   
5.
This paper investigates quasi-periodic vibration-based energy harvesting in a delayed nonlinear MEMS device consisting of a delayed Mathieu–van der Pol–Duffing type oscillator coupled to a delayed piezoelectric coupling mechanism. We use the multiple scales method to approximate the quasi-periodic response and the related power output near the principal parametric resonance. The effect of time delay on the energy harvesting performance is studied. It is shown that for appropriate combination of time delay parameters, there exists an optimum range of excitation frequency beyond the resonance where quasi-periodic vibration-based energy harvesting is maximum. Numerical simulations are performed to confirm the analytical predictions.  相似文献   
6.
The present article is devoted to find some invariant solutions of the \((2+1)\)-dimensional Bogoyavlenskii equations using similarity transformations method. The system describes \((2+1)\)-dimensional interaction of a Riemann wave propagating along y-axis with a long wave along x-axis. All possible vector fields, commutative relations and symmetry reductions are obtained by using invariance property of Lie group. Meanwhile, the method reduces the number of independent variables by one, which leads to the reduction of Bogoyavlenskii equations into a system of ordinary differential equations. The system so obtained is solved under some parametric restrictions and provides invariant solutions. The derived solutions are much efficient to explain the several physical properties depending upon various existing arbitrary constants and functions. Moreover, some of them are more general than previously established results (Peng and Shen in Pramana 67:449–456, 2006; Malik et al. in Comput Math Appl 64:2850–2859, 2012; Zahran and Khater in Appl Math Model 40:1769–1775, 2016; Zayed and Al-Nowehy in Opt Quant Electron 49(359):1–23, 2017). In order to provide rich physical structures, the solutions are supplemented by numerical simulation, which yield some positons, negatons, kinks, wavefront, multisoliton and asymptotic nature.  相似文献   
7.
In this paper we study the limit cycles of some classes of piecewise smooth vector fields defined in the two dimensional torus. The piecewise smooth vector fields that we consider are composed by linear, Ricatti with constant coefficients and perturbations of these one, which are given in (3). Considering these piecewise smooth vector fields we characterize the global dynamics, studying the upper bound of number of limit cycles, the existence of non-trivial recurrence and a continuum of periodic orbits. We also present a family of piecewise smooth vector fields that posses a finite number of fold points and, for this family we prove that for any 2k number of limit cycles there exists a piecewise smooth vector fields in this family that presents k number of limit cycles and prove that some classes of piecewise smooth vector fields presents a non-trivial recurrence or a continuum of periodic orbits.  相似文献   
8.
It is unclear whether turbulent flame speed scalings established in low speed regimes are applicable to supersonic flames. To investigate this question, the canonical flame kernel is investigated in a scramjet-like channel having a one degree wall divergence. The growth, shape and internal kernel dynamics are investigated. Results are presented for three Mach numbers, four equivalence ratios, and three turbulence generators. Schlieren photography provides flame images for growth rate statistics and particle image velocimetry (PIV) provides turbulence statistics and investigation of internal kernel dynamics. Supersonic flame kernels are self-propagating and respond to the equivalence ratio in a fashion that is similar to low speed flames. However, supersonic flame kernels have features that are not present in subsonic flame kernels. Baroclinicity, resulting from pressure-density misalignment, creates a reacting vortex ring structure. Further, the mean kernel shape has a Mach number dependence and the vortex ring enhances the turbulent flame speed through entrainment of reactants and augmented flame surface growth. Hence, the previously established (low speed) flame speed scalings are inappropriate for supersonic flame kernels. Drawing motivation from vortex ring literature, the ring propagation velocity is used as the characteristic velocity and a new flame speed scaling is proposed.  相似文献   
9.
The effect of micro-bubbles on the turbulent boundary layer in the channel flow with Reynolds numbers (Re) ranging from \(0.87\times 10 ^{5}\) to \(1.23\times 10^{5}\) is experimentally studied by using particle image velocimetry (PIV) measurements. The micro-bubbles are produced by water electrolysis. The velocity profiles, Reynolds stress and instantaneous structures of the boundary layer, with and without micro-bubbles, are measured and analyzed. The presence of micro-bubbles changes the streamwise mean velocity of the fluid and increases the wall shear stress. The results show that micro-bubbles have two effects, buoyancy and extrusion, which dominate the flow behavior of the mixed fluid in the turbulent boundary layer. The buoyancy effect leads to upward motion that drives the fluid motion in the same direction and, therefore, enhances the turbulence intense of the boundary layer. While for the extrusion effect, the presence of accumulated micro-bubbles pushes the flow structures in the turbulent boundary layer away from the near-wall region. The interaction between these two effects causes the vorticity structures and turbulence activity to be in the region far away from the wall. The buoyancy effect is dominant when the Re is relatively small, while the extrusion effect plays a more important role when Re rises.  相似文献   
10.
Based on the H–H equation, this study has proposed the calculation and analysis of energy expenditure for a single neuron which is activated at sup-threshold and subthreshold, as well as the criterion of the energy expenditure of neurons activated sup-threshold and subthreshold, which was the maximum power of a sodium ion pump. Results of the study showed that not only the electrophysiological activities of neurons were strictly restricted by the energy levels in the brain, but also the activities of neurons also had dual nature, meaning that subthreshold neurons were mainly with energy expenditure, while sup-threshold neurons were with both energy absorption and energy expenditure. These new findings were compared with the novel neuro-biophysical models that we have published last year, uncovering that the two models were essentially equivalent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号