首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79315篇
  免费   312篇
  国内免费   510篇
化学   25008篇
晶体学   819篇
力学   6788篇
综合类   14篇
数学   32080篇
物理学   15428篇
  2021年   37篇
  2020年   45篇
  2019年   51篇
  2018年   10462篇
  2017年   10283篇
  2016年   6098篇
  2015年   901篇
  2014年   360篇
  2013年   414篇
  2012年   3869篇
  2011年   10600篇
  2010年   5682篇
  2009年   6089篇
  2008年   6669篇
  2007年   8816篇
  2006年   273篇
  2005年   1359篇
  2004年   1588篇
  2003年   2003篇
  2002年   1043篇
  2001年   282篇
  2000年   331篇
  1999年   183篇
  1998年   208篇
  1997年   163篇
  1996年   224篇
  1995年   134篇
  1994年   93篇
  1993年   116篇
  1992年   78篇
  1991年   83篇
  1990年   69篇
  1989年   65篇
  1988年   64篇
  1987年   64篇
  1986年   61篇
  1985年   51篇
  1984年   49篇
  1983年   39篇
  1982年   41篇
  1981年   39篇
  1980年   48篇
  1979年   45篇
  1978年   35篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
位错是金属塑性变形普遍形式,对其可动位错演化特性与规律探寻并充分利用,将在金属强韧化提升中有着潜在基础前瞻性研究价值.本文基于分子动力学法对金属Al塑性变形的可动位错迁演特性展开研究,洞悉纳米压痕诱导的可动位错与孪晶界面间作用规律,揭示出金属强化微观机制,并分析单层孪晶界高度与多层孪晶界层间距对可动位错迁演、位错密度、硬度、黏着效应的影响.研究发现:高速变形下的金属非晶产生和密排六方结构的出现会协同主导Al基塑性变形,而孪晶界会阻碍可动位错滑移、诱导可动位错缠绕及交滑移产生,在金属承载提升中扮演了位错墙和诱导位错胞形成的微观作用.通过在孪晶界形成钉扎位错和限制位错迁移,在受限域形成高密度局域可动位错,显著强化了金属硬度和韧性,降低了卸载时黏附于探针表面的原子数.结果表明:Al基受载会诱导上表面局部非接触区原子失配斑出现;单层孪晶界高度离基底上表面距离减小时,位错缠绕和交滑移作用越明显,抗黏着效应也随之下降;载荷持续增加会诱驱孪晶界成为位错萌生处与发射源,并伴随塑性环的繁衍增殖.  相似文献   
2.
黄孝龙  李宁  翁春生  康杨 《中国物理 B》2022,31(1):14703-014703
Instantaneous and precise velocity sensing is a critical part of research on detonation mechanism and flow evolution.This paper presents a novel multi-projection tunable diode laser absorption spectroscopy solution,to provide a real-time and reliable measurement of velocity distribution in detonation exhaust flow with obvious nonuniformity.Relations are established between overlapped spectrums along probing beams and Gauss velocity distribution phantom according to the frequency shifts and tiny variations in components of light-of-sight absorbance profiles at low frequencies analyzed by the fast Fourier transform.With simulated optical measurement using H2O feature at 7185.6 cm-1 carried out on a phantom generated using a simulation of two-phase detonation by a two-fluid model,this method demonstrates a satisfying performance on recovery of velocity distribution profiles in supersonic flow even with a noise equivalent absorbance up to 2×10-3.This method is applied to the analysis of rapidly decreasing velocity during a complete working cycle in the external flow field of an air-gasoline detonation tube operating at 25 Hz,and results show the velocity in the core flow field would be much larger than the arithmetic average from traditional tunable diode laser doppler velocimetry.This proposed velocity distribution sensor would reconstruct nonuniform velocity distribution of high-speed flow in low cost and simple operations,which broadens the possibility for applications in research on the formation and propagation of external flow filed of detonation tube.  相似文献   
3.
在实验室里的实验教学过程涉及到教书育人、管理育人、服务育人和环境育人。一个良好的实验环境不仅能够对学生起到潜移默化的教育作用,而且对教书育人、管理育人和服务育人工作的开展和实施也能起到推动和促进作用。本文主要介绍厦门大学化学国家级实验教学示范中心"以学生为中心",在强化实验教学环境内涵建设、提高实验环境育人质量方面的一些做法和体会,以期更好地为实验教学"思政"提供可复制、可推广的建设方案。  相似文献   
4.
A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented. Also, a combination parameter is defined to consider the mutual effect of deformation and hysteretic energy for different types of components in different loading stages. Four reinforced concrete (RC) columns are simulated and analyzed using the nonlinear damage model. The results indicate that the damage evolution evaluated by the model agrees well with the experimental phenomenon. Furthermore, the seismic damage evolution of a six-story RC frame was analyzed, revealing four typical failure modes according to the interstory drift distribution of the structure; the damage values calculated using the nonlinear damage model agree well with the four typical failure modes.  相似文献   
5.
Measuring angles in the Euclidean plane is a well-known topic, but for general normed planes there exists a variety of different concepts. These can be of a special kind, e.g. also preserving special orthogonality types. But these concepts are no angle measures in the sense of measure theory since they are not additive. This motivates us to define a new angle measure for normed planes that is in fact a measure in the sense of measure theory. Furthermore, we look at related types of rotation and reflection.  相似文献   
6.
We analyze isolated resonance curves (IRCs) in single-degree-of-freedom systems possessing nonlinear damping. Through the combination of singularity theory and the averaging method, the onset and merging of IRCs, which coincide to isola and simple bifurcation singularities, respectively, can be analytically predicted. Numerical simulations confirm the accuracy of the analytical developments. Another important finding of this paper is that we unveil a geometrical connection between the topology of the damping force and IRCs. Specifically, we demonstrate that extremas and zeros of the damping force correspond to the appearance and merging of IRCs. Considering a damping force possessing several minima and maxima confirms the general validity of the analytical result. It also evidences a very complex scenario for which different IRCs are created, co-exist and then merge together to form a super IRC which eventually merges with the main resonance peak.  相似文献   
7.
The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.  相似文献   
8.
Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.  相似文献   
9.
10.
By introducing the mechanical motion into the confined etchant layer technique (CELT), we have developed a promising ultra-precision machining method, termed as electrochemical mechanical micromachining (ECMM), for producing both regular and irregular three dimensional (3D) microstructures. It was found that there was a dramatic coupling effect between the confined etching process and the slow-rate mechanical motion because of the concentration distribution of electrogenerated etchant caused by the latter. In this article, the coupling effect was investigated systemically by comparing the etchant diffusion, etching depths and profiles in the non-confined and confined machining modes. A two-dimensional (2D) numerical simulation model was proposed to analyze the diffusion variations during the ECMM process, which is well verified by the machining experiments. The results showed that, in the confined machining mode, both the machining resolution and the perpendicularity tolerance of side faces were improved effectively. Furthermore, the theoretical modeling and numerical simulations were proved valuable to optimize the technical parameters of the ECMM process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号