首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   10篇
  国内免费   8篇
化学   186篇
力学   21篇
数学   129篇
物理学   195篇
  2021年   6篇
  2020年   5篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   8篇
  2014年   11篇
  2013年   17篇
  2012年   17篇
  2011年   31篇
  2010年   11篇
  2009年   12篇
  2008年   19篇
  2007年   26篇
  2006年   14篇
  2005年   18篇
  2004年   23篇
  2003年   26篇
  2002年   20篇
  2001年   8篇
  1999年   4篇
  1997年   3篇
  1995年   3篇
  1994年   8篇
  1993年   8篇
  1992年   8篇
  1991年   8篇
  1990年   8篇
  1989年   6篇
  1988年   4篇
  1987年   9篇
  1986年   9篇
  1985年   14篇
  1984年   13篇
  1983年   8篇
  1982年   11篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   7篇
  1967年   3篇
  1942年   3篇
  1933年   4篇
  1930年   3篇
  1927年   5篇
  1911年   3篇
  1908年   3篇
排序方式: 共有531条查询结果,搜索用时 764 毫秒
1.
2.
Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. Motivated by several recent studies of local graph algorithms, we consider the following variant of this problem. Let G be a connected bounded‐degree graph. Given an edge e in G we would like to decide whether e belongs to a connected subgraph consisting of edges (for a prespecified constant ), where the decision for different edges should be consistent with the same subgraph . Can this task be performed by inspecting only a constant number of edges in G ? Our main results are:
  • We show that if every t‐vertex subgraph of G has expansion then one can (deterministically) construct a sparse spanning subgraph of G using few inspections. To this end we analyze a “local” version of a famous minimum‐weight spanning tree algorithm.
  • We show that the above expansion requirement is sharp even when allowing randomization. To this end we construct a family of 3‐regular graphs of high girth, in which every t‐vertex subgraph has expansion . We prove that for this family of graphs, any local algorithm for the sparse spanning graph problem requires inspecting a number of edges which is proportional to the girth.
© 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 183–200, 2017  相似文献   
3.
In this paper, we give a direct construction for a set of dice realizing any given tournament T. The construction for a tournament with n vertices requires dice with n sides if n is odd, sides if n is divisible by 4, and sides if mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory.  相似文献   
4.
Plant-based foods, like fruits, vegetables, whole grains, legumes, nuts, seeds and other foodstuffs, have been deemed as heart healthy. The chemicals within these plant-based foods, i.e., phytochemicals, are credited with protecting the heart. However, the mechanistic actions of phytochemicals, which prevent clinical endpoints, such as pathological cardiac hypertrophy, are still being elucidated. We sought to characterize the overlapping and divergent mechanisms by which 18 selected phytochemicals prevent phenylephrine- and phorbol 12-myristate 13-acetate-mediated cardiomyocyte enlargement. Of the tested 18 compounds, six attenuated PE- and PMA-mediated enlargement of neonatal rat ventricular myocytes. Cell viability assays showed that apigenin, baicalein, berberine hydrochloride, emodin, luteolin and quercetin dihydrate did not reduce cell size through cytotoxicity. Four of the six phytochemicals, apigenin, baicalein, berberine hydrochloride and emodin, robustly inhibited stress-induced hypertrophy and were analyzed further against intracellular signaling and genome-wide changes in mRNA expression. The four phytochemicals differentially regulated mitogen-activated protein kinases and protein kinase D. RNA-sequencing further showed divergence in gene regulation, while pathway analysis demonstrated overlap in the regulation of inflammatory pathways. Combined, this study provided a comprehensive analysis of cardioprotective phytochemicals. These data highlight two defining observations: (1) that these compounds predominantly target divergent gene pathways within cardiac myocytes and (2) that regulation of overlapping signaling and gene pathways may be of particular importance for the anti-hypertrophic actions of these phytochemicals. Despite these new findings, future works investigating rodent models of heart failure are still needed to understand the roles for these compounds in the heart.  相似文献   
5.
6.
7.
In this study, polyvinyl alcohol (PVA) nanofibers with ethyl vanillin as an active compound were prepared using electrospinning technique. The final products of electrospinning process were in the form of nanofibers films. PVA/ethyl vanillin nanofibers, having fibers diameters in the range 100–1700 nm, were successfully electrospun from ethanol/water mixture of PVA and ethyl vanillin. The effects of immobilization process on ethyl vanillin thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC showed significant influence of immobilization process on thermal properties of ethyl vanillin. It was noticed that melting point of immobilized ethyl vanillin was lower (~55 °C) compared to free flavor (~77 °C). Our results showed that films based on PVA/ethyl vanillin nanofibers are mechanically stable.  相似文献   
8.
The most intriguing feature of metal–metal bonds in inorganic compounds is an apparent lack of correlation between the bond order and the bond length. In this study, we combine a variety of literature data obtained by quantum chemistry and our results based on the empirical bond valence model (BVM), to confirm for the first time the existence of a normal exponential correlation between the effective bond order (EBO) and the length of the metal–metal bonds. The difference between the EBO and the formal bond order is attributed to steric conflict between the (TM)n cluster (TM=transition metal) and its environment. This conflict, affected mainly by structural type, should cause high lattice strains, but electron redistribution around TM atoms, evident from the BVM calculations, results in a full or partial strain relaxation.  相似文献   
9.
There is a great need to improve the biocompatibility of silicon‐based lab‐on‐chip substrate materials for reliable quantitative analysis of biological solutions. These advanced microdevice surfaces need not only be biocompatible but also have surfaces of defined wettability characteristics. The inhibition of biomolecular activity due to microdevice surface interaction is common and can result in inaccurate results or decreased reaction yields. In this work we investigate different techniques for the chemical functionalization of oxidized silicon (SiOx) surfaces in order to: (i) obtain defined hydrophobic/hydrophilic surfaces; and (ii) increase the efficiency of performing Real‐Time Polymerase Chain Reaction (PCR) on a silicon‐based lab‐on‐chip. Silicon oxide surfaces are functionalized by grafting alkylic chain silanes and poly(ethylene glycol) (PEG) chains to the surfaces, rendering them hydrophobic or hydrophilic. Functionalized surfaces are characterized through contact angle and atomic force microscopy (AFM) measurements, showing stable hydrophobic surfaces with contact angles of 69–78° and layer thicknesses of 11–15 Å and hydrophilic surfaces displaying contact angles of 5–6° and thicknesses of 22–52 Å. PCR experiments carried out directly on bare silicon oxide lab‐on‐chip surfaces show low yields of DNA amplification. Hydrophobic surfaces decrease the inhibition of PCR. Hydrophilic surfaces are a major improvement on the bare silicon oxide exhibiting the same maximum reaction yield as obtained with a standard thermocycler. We have found that the best results are associated with PEG modified surfaces, which prove very suitable for the fabrication of reliable PCR silicon lab‐on‐chips. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
One of the most promising strategies to treat cancer is the use of therapeutic antibodies that disrupt cell–cell adhesion mediated by dysregulated cadherins. The principal site where cell–cell adhesion occurs encompasses Trp2 found at the N-terminal region of the protein. Herein, we employed the naturally exposed highly conserved peptide Asp1-Trp2-Val3-Ile4-Pro5-Pro6-Ile7, as epitope to prepare molecularly imprinted polymer nanoparticles (MIP-NPs) to recognize cadherins. Since MIP-NPs target the site responsible for adhesion, they were more potent than commercially available therapeutic antibodies for inhibiting cell–cell adhesion in cell aggregation assays, and for completely disrupting three-dimensional tumor spheroids as well as inhibiting invasion of HeLa cells. These biocompatible supramolecular anti-adhesives may potentially be used as immunotherapeutic or sensitizing agents to enhance antitumor effects of chemotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号