首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   7篇
化学   242篇
晶体学   2篇
力学   27篇
数学   50篇
物理学   46篇
  2023年   5篇
  2022年   4篇
  2021年   8篇
  2020年   11篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   12篇
  2015年   23篇
  2014年   10篇
  2013年   23篇
  2012年   27篇
  2011年   45篇
  2010年   16篇
  2009年   12篇
  2008年   23篇
  2007年   21篇
  2006年   11篇
  2005年   20篇
  2004年   10篇
  2003年   15篇
  2002年   14篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1963年   1篇
  1955年   1篇
  1944年   1篇
  1943年   1篇
排序方式: 共有367条查询结果,搜索用时 125 毫秒
1.
Unit cell parameters have been calculated from x-ray powder diffraction data of Mo2Br4 Py 4 (A), Mo2I4 Py 4 (B), Mo2I4 Pic 4 (C), Mo2(SCN)4 Py 4 (D) and Mo2(SCN)4 Pic 4 (E), A, B and C crystallize tetragonal. A witha=9,42,c=15,O2 Å; B witha=9,46,c=14,98 Å and C witha=9,66 andc=15,72 Å D and E crystallize orthorhombic. D witha=10,09,b=9,14,c=15,08 Å; E witha=10,22,b=9,41 andc=15,15 Å.Py=pyridine,Pic=4-methylpyridine.
  相似文献   
2.
The power conversion efficiency (PCE) of NiO based perovskite solar cells has recently hit a record 22.1% with a hybrid organic–inorganic perovskite composition and a PCE above 15% in a fully inorganic configuration was achieved. Moreover, NiO processing is a mature technology, with different industrially attractive processes demonstrated in the last few years. These considerations, along with the excellent stabilities reported, clearly point towards NiO as the most efficient inorganic hole selective layer for lead halide perovskite photovoltaics, which is the topic of this review. NiO optoelectronics is discussed by analysing the different doping mechanisms, with a focus on the case of alkaline and transition metal cation dopants. Doping allows tuning the conductivity and the energy levels of NiO, improving the overall performance and adapting the material to a variety of perovskite compositions. Furthermore, we summarise the main investigations on the NiO/perovskite interface stability. In fact, the surface of NiO is commonly oxidised and reactive with perovskite, also under the effect of light, thermal and electrical stress. Interface engineering strategies should be considered aiming at long term stability and the highest efficiency. Finally, we present the main achievements in flexible, fully printed and lead-free perovskite photovoltaics which employ NiO as a layer and provide our perspective to accelerate the improvement of these technologies. Overall, we show that adequately doped and passivated NiO might be an ideal hole selective layer in every possible application of perovskite solar cells.

The power conversion efficiency of NiO based perovskite solar cells has recently hit a record 22.1%. Here, the main advances are reviewed and the role of NiO in the next breakthroughs is discussed.  相似文献   
3.
[structure: see text]. The synthesis and nonlinear optical characterization of two novel heteroaromatic-based chromophores is described. The new dyes present an A-pi-D-pi-A general framework, where A is a pi-deficient heteroaromatic ring (pyridine, quinoline, benzothiazole) and D a pi-excessive pyrrolyl moiety. Both systems exhibit large two-photon absorption (TPA) values in the femtoseconds regime (TPA cross section as high as 150 x 10(-50) cm(4) s photon(-1) molecule(-1) with 150 fs laser pulses). Their TPA-based optical limiting activity is also shown.  相似文献   
4.
An abnormal interaction between copper and the prion protein is believed to play a pivotal role in the pathogenesis of prion diseases. Copper binding has been mainly attributed to the N-terminal domain of the prion protein, but this hypothesis has recently been challenged in some papers which suggest that the C-terminal domain might also compete for metal anchoring. In particular, the segment corresponding to the helix II region of the prion protein, namely PrP180-193, has been shown both to bind copper and to exhibit a copper-enhanced cytotoxicity, as well as to interact with artificial membranes. The present work is aimed at extending these results by choosing the most representative model of this domain and by determining its copper affinity. With this aim, the different role played by the electrostatic properties of the C- and N-termini of PrP180-193 (VNITIKQHTVTTTT) in determining its conformational behaviour, copper coordination and ability to perturb model membranes was investigated. Owing to the low solubility of PrP180-193, its copper affinity was evaluated by using the shorter PrPAc184-188NH2 (IKQHT) analogue as a model. ESI-MS, ESR, UV/Vis, and CD measurements were carried out on the copper(II)/PrPAc184-188NH2 and copper(II)/PrP180-193NH2 systems, and showed that PrPAc184-188NH2 is a reliable model for the metal interaction with the helix II domain. The affinity of copper(II) for the helix II fragment is higher than that for the octarepeat and PrP106-126 peptides. Finally, the different ability of PrP180-193 analogues to perturb the DPPC model membrane was assessed by DSC measurements. The possible biological consequences of these findings are also discussed briefly.  相似文献   
5.
The first examples of heterocycle-based multi-branched dyes with efficient two-photon absorption (TPA) activity are reported; the novel chromophores exhibit large TPA cross sections (as high as 1600 x 10(-50) cm4 s photon(-1) molecule(-1), measured with 150 fs laser pulses at 800 nm); a strong cooperative enhancement in the branched systems with respect to the one-dimensional sub-units is found.  相似文献   
6.
7.
A thermally stable carbocationic covalent organic network (CON), named RIO-70 was prepared from pararosaniline hydrochloride, an inexpensive dye, and triformylphloroglucinol in solvothermal conditions. This nanoporous organic material has shown a specific surface area of 990 m2 g−1 and pore size of 10.3 Å. The material has CO2 uptake of 2.14 mmol g−1 (0.5 bar), 2.7 mmol g−1 (1 bar), and 6.8 mmol g−1 (20 bar), the latter corresponding to 3 CO2 molecules adsorbed per pore per sheet. It is shown to be a semiconductor, with electrical conductivity (σ) of 3.17×10−7 S cm−1, which increases to 5.26×10−4 S cm−1 upon exposure to I2 vapor. DFT calculations using periodic conditions support the findings.  相似文献   
8.
The current chemotherapy for Chagas disease is still based on benznidazole, which has low solubility, but complexation with cyclodextrins provides a way of increasing the solubility. The objective of this work was to characterize the inclusion complexes formed between benznidazole (BNZ) and randomly 2-methyled-β-cyclodextrin (RM-β-CD) in aqueous solution and study cytotoxicity and trypanocidal. BNZ:RM-β-CD solution complex systems were prepared and characterized using the phase solubility diagram, nuclear magnetic resonance and a photostability assays, also to investigate the in vitro trypanocidal activity with epimastigote forms of Trypanossoma cruzi and the study of cytotoxicity against mammal cells. The phase-solubility diagram displayed an A L-type feature, providing evidence of the formation of soluble inclusion complexes. The continuous variation method showed the existence of a complex with 1:1 stoichiometry. Toxicity assays demonstrated that inclusion complexes were able to reduce the toxic effects caused by benznidazole alone and that this did not interfere with the trypanocidal activity of the benznidazole. The use of inclusion complexes benznidazole:cyclodextrin is thus a promising alternative for the development of a safe and stable liquid formulation and a new option for the treatment of Chagas disease.  相似文献   
9.
The enantiospecific syntheses of both enantiomers of bacillamide C and neobacillamide A are described, along with the measurement of their optical activities, leading to the revision of the proposed absolute configurations of these natural products.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号