首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   959篇
  免费   83篇
  国内免费   40篇
化学   737篇
晶体学   9篇
力学   27篇
综合类   1篇
数学   103篇
物理学   205篇
  2023年   10篇
  2022年   7篇
  2021年   13篇
  2020年   19篇
  2019年   25篇
  2018年   20篇
  2017年   11篇
  2016年   38篇
  2015年   45篇
  2014年   40篇
  2013年   70篇
  2012年   70篇
  2011年   76篇
  2010年   62篇
  2009年   44篇
  2008年   78篇
  2007年   56篇
  2006年   52篇
  2005年   48篇
  2004年   31篇
  2003年   21篇
  2002年   24篇
  2001年   13篇
  2000年   15篇
  1999年   12篇
  1998年   11篇
  1997年   11篇
  1996年   14篇
  1995年   12篇
  1994年   12篇
  1993年   5篇
  1992年   10篇
  1991年   11篇
  1990年   7篇
  1989年   4篇
  1988年   8篇
  1985年   4篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   7篇
  1974年   4篇
  1973年   4篇
  1967年   4篇
  1964年   2篇
  1934年   2篇
排序方式: 共有1082条查询结果,搜索用时 171 毫秒
1.
Sample preparation methods used for genetically modified organisms (GMOs) analysis are often time consuming, require extensive manual manipulation, and result in limited amounts of purified protein, which may complicate the detection of low‐abundance GM protein. A robust sample pretreatment method prior to mass spectrometry (MS) detection of the transgenic protein (5‐enolpyruvylshikimate‐3‐phosphate synthase [CP4 EPSPS]) present in Roundup Ready soya is investigated. Liquid chromatography‐multiple reaction monitoring tandem MS (nano LC‐MS/MS‐MRM) was used for the detection and quantification of CP4 EPSPS. Gold nanoparticles (AuNPs) and concanavalin A (Con A)‐immobilized Sepharose 4B were used as selective probes for the separation of the major storage proteins in soybeans. AuNPs that enable the capture of cysteine‐containing proteins were used to reduce the complexity of the crude extract of GM soya. Con A‐sepharose was used for the affinity capture of β‐conglycinin and other glycoproteins of soya prior to enzymatic digestion. The methods enabled the detection of unique peptides of CP4 EPSPS at a level as low as 0.5% of GM soya in MRM mode. Stable‐isotope dimethyl labeling was further applied to the quantification of GM soya. Both probes exhibited high selectivity and efficiency for the affinity capture of storage proteins, leading to the quantitative detection at 0.5% GM soya, which is a level below the current European Union's threshold for food labeling. The square correlation coefficients were greater than 0.99. The approach for sample preparation is very simple without the need for time‐consuming protein prefractionation or separation procedures and thus presents a significant improvement over existing methods for the analysis of the GM soya protein.  相似文献   
2.
An organic–inorganic hybrid zinc phosphate with 28‐ring channels was synthesized by use of an organic ligand instead of organic amine template under a hydro(solvo)thermal condition. This crystalline zinc phosphate contains large channels constructed from 28 zinc and phosphate tetrahedral units. The walls of the channels consist of two types of zincophosphate chains, in which the Zn atoms are coordinated by 2,4,5‐tri(4‐pyridyl)‐imidazole ligands as pendent groups. This compound exhibits yellow emission and interesting properties of removing cobalt, cadmium, and mercury cations from aqueous solution. A new two‐dimensional organic–inorganic hybrid zincophosphate was also obtained by changing the solvent mixture ratios in the synthesis.  相似文献   
3.
A model is developed for the formation and propagation of cracks in a material sample that is heated at its top surface, pyrolyses, and then thermally degrades to form char. In this work the sample is heated uniformly over its entire top surface by a hypothetical flame (a heat source). The pyrolysis mechanism is described by a one-step overall reaction that is dependent nonlinearly on the temperature (Arrhenius form). Stresses develop in response to the thermal degradation of the material by means of a shrinkage strain caused by local mass loss during pyrolysis. When the principal stress exceeds a prescribed threshold value, the material forms a local crack. Cracks are found to generally originate at the surface in response to heating, but occasionally they form in the bulk, away from ever-changing material boundaries. The resulting cracks evolve and form patterns whose characteristics are described. Quantities examined in detail are: the crack spacing in the pyrolysis zone; the crack length evolution; the formation and nature of crack loops which are defined as individual cracks that have joined to form loops that are disconnected from the remaining material; the formation of enhanced pyrolysis area; and the impact of all of the former quantities on mass flux. It is determined that the mass flux from the sample can be greatly enhanced over its nominal (non-cracking) counterpart. The mass efflux profile qualitatively resembles those observed in Cone Calorimeter tests.  相似文献   
4.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
5.
Journal of Optimization Theory and Applications - We consider the conic linear program given by a closed convex cone in an Euclidean space and a matrix, where vector on the right-hand side of the...  相似文献   
6.
Heat shock protein 90 (Hsp90) is a molecular chaperone (90 kDa) that functions as a dimer. This protein facilitates the folding, assembly, and stabilization of more than 400 proteins that are responsible for cancer development and progression. Inhibiting Hsp90’s function will shut down multiple cancer‐driven pathways simultaneously because oncogenic clients rely heavily on Hsp90, which makes this chaperone a promising anticancer target. Classical inhibitors that block the binding of adenine triphosphate (ATP) to the N‐terminus of Hsp90 are highly toxic to cells and trigger a resistance mechanism within cells. This resistance mechanism comprises a large increase in prosurvival proteins, namely, heat shock protein 70 (Hsp70), heat shock protein 27 (Hsp27), and heat shock factor 1 (HSF‐1). Molecules that modulate the C‐terminus of Hsp90 are effective at inducing cancer‐cell death without activating the resistance mechanism. Herein, we describe the design, synthesis, and biological binding affinity for a series of dimerized C‐terminal Hsp90 modulators. We show that dimers of these C‐terminal modulators synergistically inhibit Hsp90 relative to monomers.  相似文献   
7.
We present a continuous-time generalization of the seminal research and development model of d’Aspremont and Jacquemin (Am Econ Rev 78(5):1133–1137, 1988) to examine the trade-off between the benefits of allowing firms to cooperate in research and the corresponding increased potential for product market collusion. We show the existence of a solution to the optimal investment problem using a combination of results from viscosity theory and the theory of planar dynamical systems. In particular, we show that there is a critical level of marginal cost at which firms are indifferent between doing nothing and starting to develop the technology. We find that colluding firms develop further a wider range of initial technologies, pursue innovations more quickly, and are less likely to abandon a technology. Product market collusion could thus yield higher total surplus.  相似文献   
8.
Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.  相似文献   
9.
Piezocatalysis offers a means to transduce mechanical energy into chemical potential, harnessing physical force to drive redox reactions. Working in the solid state, we show here that piezoelectric BaTiO3 nanoparticles can transduce mechanical load into a flux of reactive radical species capable of initiating solid state free radical polymerization. Activation of a BaTiO3 powder by ball milling, striking with a hammer, or repeated compressive loading generates highly reactive hydroxyl radicals (⋅OH), which readily initiate radical chain growth and crosslinking of solid acrylamide, acrylate, methacrylate and styrenic monomers. Control experiments indicate a critical role for chemisorbed water on the BaTiO3 nanoparticle surface, which is oxidized to ⋅OH via mechanoredox catalysis. The force-induced production of radicals by compressing dry piezoelectric materials represents a promising new route to harness mechanical energy for solid state radical synthesis.  相似文献   
10.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used hole transporting layer (HTL) in organic solar cells (OSCs), but its acidity severely reduces the stability of devices. Until now, very few HTLs were developed to replace PEDOT:PSS toward stable and high-performance OSCs. Herein, a new cobalt-lanthanum (Co-La) inorganic system was reported as HTL to show a high conversion efficiency (PCE) of 18.82 %, which is among the top PCEs in binary OSCs. Since electron-rich outer shell of La atom can interact with Co atom to form charge transfer complex, the work function and conductivity of the Co-La system could be simultaneously enhanced compared to Co or La-based HTLs. This Co-La system could also be applied into other OSCs to show high performance. All these results demonstrate that binary Co-La systems as HTL can efficiently tackle the issue in hole transporting and show powerful application in OSCs to replace PEDOT:PSS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号