首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  数学   12篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有12条查询结果,搜索用时 124 毫秒
1.
Online IPA Gradient Estimators in Stochastic Continuous Fluid Models   总被引:1,自引:0,他引:1  
This paper applies infinitesimal perturbation analysis (IPA) to loss-related and workload-related metrics in a class of stochastic flow models (SFM). It derives closed-form formulas for the gradient estimators of these metrics with respect to various parameters of interest, such as buffer size, service rate, and inflow rate. The IPA estimators derived are simple and fast to compute, and are further shown to be unbiased and nonparametric, in the sense that they can be computed directly from the observed data without any knowledge of the underlying probability law. These properties hold out the promise of utilizing IPA gradient estimates as ingredients of online management and control of telecommunications networks. While this paper considers single-node SFMs, the analysis method developed is amenable to extensions to networks of SFM nodes with more general topologies.  相似文献
2.
A real-time hierarchical routing control scheme for a large class of material handling systems is presented. The higher level (coordinator) performs resource allocation tasks and supplies parameter values to the lower (local control) level. The lower level operates in an autonomous (without continuous supervision) and distributed fashion. If state information is made available to the coordinator, the routing strategy can furthermore be adaptively adjusted.  相似文献
3.
We formulate and analyze a dynamic scheduling problem for a class of transportation systems in a Markov Decision Process (MDP) framework. A transportation system is represented by a polling model consisting of a number of stations and a server with switch-over costs and constraints on its movement (the model we have analyzed is intended to emulate key features of an elevator system). Customers request service in order to be transported by the server from various arrival stations to a common destination station. The objective is to minimize a cost criterion that incorporates waiting costs at the arrival stations. Two versions of the basic problem are considered and structural properties of the optimal policy in each case are derived. It is shown that optimal scheduling policies are characterized by switching functions dependent on state information consisting of queue lengths formed at the arrival stations.  相似文献
4.
We consider stochastic discrete optimization problems where the decision variables are nonnegative integers and propose a generalized surrogate problem methodology that modifies and extends previous work in Ref. 1. Our approach is based on an online control scheme which transforms the problem into a surrogate continuous optimization problem and proceeds to solve the latter using standard gradient-based approaches while simultaneously updating both the actual and surrogate system states. In contrast to Ref. 1, the proposed methodology applies to arbitrary constraint sets. It is shown that, under certain conditions, the solution of the original problem is recovered from the optimal surrogate state. Applications of this approach include solutions to multicommodity resource allocation problems; in these problems, exploiting the convergence speed of the method, one can overcome the obstacle posed by the presence of local optima.  相似文献
5.
We consider stochastic discrete optimization problems where the decision variables are nonnegative integers. We propose and analyze an online control scheme which transforms the problem into a surrogate continuous optimization problem and proceeds to solve the latter using standard gradient-based approaches, while simultaneously updating both the actual and surrogate system states. It is shown that the solution of the original problem is recovered as an element of the discrete state neighborhood of the optimal surrogate state. For the special case of separable cost functions, we show that this methodology becomes particularly efficient. Finally, convergence of the proposed algorithm is established under standard technical conditions; numerical results are included in the paper to illustrate the fast convergence of this approach.  相似文献
6.
We explore an approach involving the use of calculus of variations techniques for discrete event dynamic system (DEDS) performance optimization problems. The approach is motivated by the observation that such problems can be described by separable cost functions and recursive dynamics of the same form as that used to describe conventional discrete-time continuous-variable optimal control problems. Three important difficulties are that DEDS are generally stochastic, their dynamics typically involve max and min operations, which are not everywhere differentiable, and the state variables are often discrete. We demonstrate how to overcome these difficulties by applying the approach to a transportation problem, modeled as a polling system, where we are able to derive an explicit and intuitive analytic expression for an optimal control policy.  相似文献
7.
The problem of stochastic optimization for arbitrary objective functions presents a dual challenge. First, one needs to repeatedly estimate the objective function; when no closed-form expression is available, this is only possible through simulation. Second, one has to face the possibility of determining local, rather than global, optima. In this paper, we show how the stochastic comparison approach recently proposed in Ref. 1 for discrete optimization can be used in continuous optimization. We prove that the continuous stochastic comparison algorithm converges to an -neighborhood of the global optimum for any >0. Several applications of this approach to problems with different features are provided and compared to simulated annealing and gradient descent algorithms.This work was supported in part by the National Science Foundation under Grants EID-92-12122 and ECS-88-01912, and by a Grant from United Technologies/Otis Elevator Company.  相似文献
8.
This paper addresses the problem of routing and admission control of real-time traffic in a queueing system where customers must begin service within given deadlines (or complete service within given deadlines), otherwise they are considered lost. Performance in such systems is measured by the probability a customer is lost. For a system ofK parallel servers with a probabilistic routing and admission control scheme, the problem of the optimal routing and admission control is considered and two approaches are presented. Assuming the availability of a closed-form expression for the probability of loss at each server, the problem is solved under general conditions and properties of the optimal flow allocation are given. However, such closed-form expressions are often unavailable. This motivates a second approach, which involves a gradient-based stochastic optimization algorithm with on-line gradient estimation. The gradient estimation problem for loss probabilities is solved through a recently-developed smoothed perturbation analysis (SPA) technique. The effectiveness of on-line stochastic optimization using this type of gradient estimator is demonstrated by combining the SPA algorithm with a sampling-controlled stochastic optimization algorithm for the aforementioned routing and admission control problem.This work was supported in part by the Office of Naval Research under Contract N00014-87-K-0304, by the Rome Air Development Center under Contract F30602-88-D-0027, by NASA under Contract NAG 2-595, and by the National Science Foundation under Grant EID-92-12122.The authors are grateful to Don Towsley for several contributions to Section 2 and to an anonymous reviewer for pointing out a redundant assumption in the proof of Lemma 2.1.  相似文献
9.
We study the effect of arrival model uncertainties on the optimal routing in a system of parallel queues. For exponential service time distributions and Bernoulli routing, the optimal mean system delay generally depends on the interarrival time distribution. Any error in modeling the arriving process will cause a model-based optimal routing algorithm to produce a mean system delay higher than the true optimum. In this paper, we present an asymptotic analysis of the behavior of this error under heavy traffic conditions for a general renewal arrival process. An asymptotic analysis of the error in optimal mean delay due to uncertainties in the service time distribution for Poisson arrivals was reported in Ref. 6, where it was shown that, when the first moment of the service time distribution is known, this error in performance vanishes asymptotically as the traffic load approaches the system capacity. In contrast, this paper establishes the somewhat surprising result that, when only the first moment of the arrival distribution is known, the error in optimal mean delay due to uncertainties in the arrival model is unbounded as the traffic approaches the system capacity. However, when both first and second moments are known, the error vanishes asymptotically. Numerical examples corroborating the theoretical results are also presented.This work was supported by the National Science Foundation under Grants ECS-88-01912 and EID-92-12122 and by NASA under Contract NAG 2-595.The authors wish to thank an anonymous referee for pointing out Ref. 20, thus avoiding the need for an explicit proof of convexity of the cost function considered in the paper.  相似文献
10.
We study the effect of model uncertainties on optimal routing in a system of parallel queues. The uncertainty arises in modeling the service time distribution for the customers (jobs, packets) to be served. For a Poisson arrival process and Bernoulli routing, the optimal mean system delay generally depends on the variance of this distribution. However, as the input traffic load approaches the system capacity, the optimal routing assignment and corresponding mean system delay are shown to converge to a variance-invariant point. The implications of these results are examined in the context of gradient-based routing algorithms. An example of a model-independent algorithm using on-line gradient estimation is also included and its performance compared with that of model-based algorithms.This work was supported in part by the National Science Foundation under Grant ECS-88-01912, by the Office of Naval Research under Contract N00014-87-K-0304, and by NASA under Contract NAG 2-595.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号