首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3761篇
  免费   88篇
  国内免费   42篇
化学   2623篇
晶体学   25篇
力学   52篇
数学   694篇
物理学   497篇
  2023年   17篇
  2021年   28篇
  2020年   22篇
  2019年   45篇
  2018年   22篇
  2017年   31篇
  2016年   71篇
  2015年   52篇
  2014年   62篇
  2013年   198篇
  2012年   171篇
  2011年   196篇
  2010年   101篇
  2009年   80篇
  2008年   236篇
  2007年   252篇
  2006年   260篇
  2005年   260篇
  2004年   201篇
  2003年   137篇
  2002年   125篇
  2001年   43篇
  2000年   49篇
  1999年   45篇
  1998年   35篇
  1997年   43篇
  1996年   66篇
  1995年   47篇
  1994年   52篇
  1993年   37篇
  1992年   41篇
  1991年   31篇
  1990年   34篇
  1989年   26篇
  1988年   36篇
  1987年   36篇
  1986年   46篇
  1985年   62篇
  1984年   64篇
  1983年   53篇
  1982年   45篇
  1981年   51篇
  1980年   56篇
  1979年   33篇
  1978年   48篇
  1977年   37篇
  1976年   33篇
  1975年   26篇
  1974年   29篇
  1973年   33篇
排序方式: 共有3891条查询结果,搜索用时 15 毫秒
1.
Coordination within and between organisms is one of the most complex abilities of living systems, requiring the concerted regulation of many physiological constituents, and this complexity can be particularly difficult to explain by appealing to physics. A valuable framework for understanding biological coordination is the coordinative structure, a self-organized assembly of physiological elements that collectively performs a specific function. Coordinative structures are characterized by three properties: (1) multiple coupled components, (2) soft-assembly, and (3) functional organization. Coordinative structures have been hypothesized to be specific instantiations of dissipative structures, non-equilibrium, self-organized, physical systems exhibiting complex pattern formation in structure and behaviors. We pursued this hypothesis by testing for these three properties of coordinative structures in an electrically-driven dissipative structure. Our system demonstrates dynamic reorganization in response to functional perturbation, a behavior of coordinative structures called reciprocal compensation. Reciprocal compensation is corroborated by a dynamical systems model of the underlying physics. This coordinated activity of the system appears to derive from the system’s intrinsic end-directed behavior to maximize the rate of entropy production. The paper includes three primary components: (1) empirical data on emergent coordinated phenomena in a physical system, (2) computational simulations of this physical system, and (3) theoretical evaluation of the empirical and simulated results in the context of physics and the life sciences. This study reveals similarities between an electrically-driven dissipative structure that exhibits end-directed behavior and the goal-oriented behaviors of more complex living systems.  相似文献   
2.
Fractional-order calculus is about the differentiation and integration of non-integer orders. Fractional calculus (FC) is based on fractional-order thinking (FOT) and has been shown to help us to understand complex systems better, improve the processing of complex signals, enhance the control of complex systems, increase the performance of optimization, and even extend the enabling of the potential for creativity. In this article, the authors discuss the fractional dynamics, FOT and rich fractional stochastic models. First, the use of fractional dynamics in big data analytics for quantifying big data variability stemming from the generation of complex systems is justified. Second, we show why fractional dynamics is needed in machine learning and optimal randomness when asking: “is there a more optimal way to optimize?”. Third, an optimal randomness case study for a stochastic configuration network (SCN) machine-learning method with heavy-tailed distributions is discussed. Finally, views on big data and (physics-informed) machine learning with fractional dynamics for future research are presented with concluding remarks.  相似文献   
3.
Cellulose - In this study, three different pulp and paper mill sludge (PPMS) samples collected from different South African mills were chemically and physically characterised to investigate their...  相似文献   
4.
5.
Extracellular vesicles, including microvesicles and exosomes, are lipidic membrane‐derived vesicles that are secreted by most cell types. Exosomes, one class of these vesicles that are 30–100 nm in diameter, hold a great deal of promise in disease diagnostics, as they display the same protein biomarkers as their originating cell. For exosomes to become useful in disease diagnostics, and as burgeoning drug delivery platforms, they must be isolated efficiently and effectively without compromising their structure. Most current exosome isolation methods have practical problems including being too time‐consuming and labor intensive, destructive to the exosomes, or too costly for use in clinical settings. To this end, this study examines the use of poly(ethylene terephthalate) (PET) capillary‐channeled polymer (C‐CP) fibers in a hydrophobic interaction chromatography (HIC) protocol to isolate exosomes from diverse matrices of practical concern. Initial results demonstrate the ability to isolate extracellular vesicles enriched in exosomes with comparable yields and size distributions on a much faster time scale when compared to traditional isolation methods. As a demonstration of the potential analytical utility of the approach, extracellular vesicle recoveries from cell culture milieu and a mock urine matrix are presented. The potential for scalable separations covering submilliliter spin‐down columns to the preparative scale is anticipated.  相似文献   
6.
One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of to produce conformations in increasing order of energy, we defined new strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new ‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc.  相似文献   
7.
Twenty-three phage-displayed peptides that specifically bind to an anti-benzothiostrobin monoclonal antibody (mAb) in the absence or presence of benzothiostrobin were isolated from a cyclic 8-residue peptide phage library. Competitive and noncompetitive phage enzyme linked immunosorbent assays (ELISAs) for benzothiostrobin were developed by using a clone C3-3 specific to the benzothiostrobin-free mAb and a clone N6-18 specific to the benzothiostrobin immunocomplex, respectively. Under the optimal conditions, the half maximal inhibition concentration (IC50) of the competitive phage ELISA and the concentration of analyte producing 50% saturation of the signal (SC50) of the noncompetitive phage ELISA for benzothiostrobin were 0.94 and 2.27 ng mL−1, respectively. The noncompetitive phage ELISA showed higher selectivity compared to the competitive. Recoveries of the competitive and the noncompetitive phage ELISAs for benzothiostrobin in cucumber, tomato, pear and rice samples were 67.6–119.6% and 70.4–125.0%, respectively. The amounts of benzothiostrobin in the containing incurred residues samples detected by the two types of phage ELISAs were significantly correlated with that detected by high-performance liquid chromatography (HPLC).  相似文献   
8.
The non‐aqueous Li–air (O2) battery has attracted intensive interest because it can potentially store far more energy than today′s batteries. Presently Li–O2 batteries suffer from parasitic reactions owing to impurities, found in almost all non‐aqueous electrolytes. Impurities include residual protons and protic compounds that can react with oxygen species, such as the superoxide (O2?), a reactive, one‐electron reduction product of oxygen. To avoid the parasitic reactions, it is crucial to have a fundamental understanding of the conditions under which reactive oxygen species are generated in non‐aqueous electrolytes. Herein we report an in situ spectroscopic study of oxygen reduction on gold in a dimethyl sulfoxide electrolyte containing phenol as a proton source. It is shown directly that O2?, not HO2, is the first stable intermediate during the oxygen reduction process to hydrogen peroxide. The unusual stability of O2? is explained using density functional theory (DFT) calculations.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号