首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7272篇
  免费   217篇
  国内免费   24篇
化学   5134篇
晶体学   24篇
力学   162篇
数学   787篇
物理学   1406篇
  2021年   57篇
  2020年   90篇
  2019年   101篇
  2018年   54篇
  2016年   140篇
  2015年   138篇
  2014年   148篇
  2013年   303篇
  2012年   243篇
  2011年   322篇
  2010年   208篇
  2009年   183篇
  2008年   295篇
  2007年   298篇
  2006年   287篇
  2005年   280篇
  2004年   267篇
  2003年   210篇
  2002年   149篇
  2001年   98篇
  2000年   89篇
  1999年   74篇
  1998年   66篇
  1997年   116篇
  1996年   120篇
  1995年   120篇
  1994年   121篇
  1993年   144篇
  1992年   99篇
  1991年   83篇
  1990年   77篇
  1989年   117篇
  1988年   88篇
  1987年   116篇
  1986年   90篇
  1985年   95篇
  1984年   106篇
  1983年   83篇
  1982年   98篇
  1981年   101篇
  1980年   110篇
  1979年   84篇
  1978年   87篇
  1977年   71篇
  1976年   90篇
  1975年   92篇
  1974年   69篇
  1973年   84篇
  1972年   50篇
  1967年   48篇
排序方式: 共有7513条查询结果,搜索用时 15 毫秒
1.
2.
Coal combustion releases elevated amounts of pollutants to the atmosphere including SOX. During the pyrolysis step, sulfur present in the coal is released to the gas phase as many different chemical species such as H2S, COS, SO2, CS2, thiols and larger tars, also called SOX precursors, as they form SOX during combustion. Understanding the sulfur release process is crucial to the development of reliable kinetic models, which support the design of improved reactors for cleaner coal conversion processes. Sulfur release from two bituminous coals, Colombian hard coal (K1) and American high sulfur coal (U2), were studied in the present work. Low heating rate (LHR) experiments were performed in a thermogravimetric analyzer coupled with mass spectrometry (TG-MS), allowing to track the mass loss and the evolution of many volatile species (CO, CO2, CH4, SO2, H2S, COS, HCl and H2O). High heating rate (HHR) experiments were performed in an entrained flow reactor (drop-tube reactor – DTR), coupled with MS and nondispersive infrared sensor (NDIR). HHR experiments were complemented with CFD simulation of the multidimentional reacting flow field. A kinetic model of coal pyrolysis is employed to reproduce the experiments allowing a comprehensive assessment of the process. The suitability of this model is confirmed for LHR. The combination of HHR experiments with CFD simulations and kinetic modeling revealed the complexity of sulfur chemistry in coal combustion and allowed to better understand of the individual phenomena resulting in the formation of the different SOX precursors. LHR and HHR operating conditions lead to different distribution of sulfur species released, highly-dependent on the gas-phase temperature and residence time. Higher retention of total sulfur in char is observed at LHR (63%) when compared to HHR (37–44%), at 1273 K. These data support the development of reliable models with improved predictability.  相似文献   
3.
Editorial     
JPC – Journal of Planar Chromatography – Modern TLC -  相似文献   
4.
The azafullerene Tb2@C79N is found to be a single‐molecule magnet with a high 100‐s blocking temperature of magnetization of 24 K and large coercivity. Tb magnetic moments with an easy‐axis single‐ion magnetic anisotropy are strongly coupled by the unpaired spin of the single‐electron Tb?Tb bond. Relaxation of magnetization in Tb2@C79N below 15 K proceeds via quantum tunneling of magnetization with the characteristic time τQTM=16 462±1230 s. At higher temperature, relaxation follows the Orbach mechanism with a barrier of 757±4 K, corresponding to the excited states, in which one of the Tb spins is flipped.  相似文献   
5.
6.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   
7.
Targeting epidermal growth factor receptor (EGFR) through an allosteric mechanism provides a potential therapeutic strategy to overcome drug-resistant EGFR mutations that emerge within the ATP binding site. Here, we develop an allosteric EGFR degrader, DDC-01-163, which can selectively inhibit the proliferation of L858R/T790M (L/T) mutant Ba/F3 cells while leaving wildtype EGFR Ba/F3 cells unaffected. DDC-01-163 is also effective against osimertinib-resistant cells with L/T/C797S and L/T/L718Q EGFR mutations. When combined with an ATP-site EGFR inhibitor, osimertinib, the anti-proliferative activity of DDC-01-163 against L858R/T790M EGFR-Ba/F3 cells is enhanced. Collectively, DDC-01-163 is a promising allosteric EGFR degrader with selective activity against various clinically relevant EGFR mutants as a single agent and when combined with an ATP-site inhibitor. Our data suggests that targeted protein degradation is a promising drug development approach for mutant EGFR.  相似文献   
8.
Graphitic carbon nitride quantum dots (g-CNQDs) are highly promising photoresponsive materials. However, synthesis of monodispersed g-CNQDs remains challenging. Here we report the dual function of MOF [Cu3BTC2] (HKUST-1) as a catalyst and template simultaneously to prepare g-CNQDs under mild conditions. Cyanamide (CA), a graphitic carbon nitride precursor, catalytically dimerized inside the larger MOF cavities at 90 °C and condensed into g-CNQDs at 120 °C in a controlled fashion. The HKUST-1 template was stable under the reaction conditions, leading to uniform g-CNQDs with a particle size of 2.22±0.68 nm. The as prepared g-CNQDs showed photoluminescence emission with a quantum yield of 3.1 %. This concept (MOF dual functionality) for catalyzing CA polycondensation (open metal sites (OMSs) effect) and controlling the produced particle size (pore-templating effect), together with the tunable MOF porosity, is expected to produce unique g-CNQDs with controllable size, morphology, and surface functionality.  相似文献   
9.
Anaerobic microorganisms of the Geobacter genus are effective electron sources for the synthesis of nanoparticles, for bioremediation of polluted water, and for the production of electricity in fuel cells. In multistep reactions, electrons are transferred via iron/heme cofactors of c‐type cytochromes from the inner cell membrane to extracellular metal ions, which are bound to outer membrane cytochromes. We measured electron production and electron flux rates to 5×105 e s?1 per G. sulfurreducens. Remarkably, these rates are independent of the oxidants, and follow zero order kinetics. It turned out that the microorganisms regulate electron flux rates by increasing their Fe2+/Fe3+ ratios in the multiheme cytochromes whenever the activity of the extracellular metal oxidants is diminished. By this mechanism the respiration remains constant even when oxidizing conditions are changing. This homeostasis is a vital condition for living systems, and makes G. sulfurreducens a versatile electron source.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号