首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   20篇
  国内免费   2篇
化学   565篇
晶体学   2篇
力学   8篇
数学   57篇
物理学   55篇
  2023年   2篇
  2022年   3篇
  2021年   26篇
  2020年   21篇
  2019年   19篇
  2018年   9篇
  2017年   9篇
  2016年   16篇
  2015年   21篇
  2014年   27篇
  2013年   52篇
  2012年   38篇
  2011年   43篇
  2010年   41篇
  2009年   25篇
  2008年   40篇
  2007年   41篇
  2006年   41篇
  2005年   41篇
  2004年   32篇
  2003年   33篇
  2002年   28篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   8篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   8篇
  1993年   5篇
  1992年   7篇
  1991年   6篇
  1989年   1篇
  1987年   1篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有687条查询结果,搜索用时 15 毫秒
1.
Despite the growing literature about diphenylalanine‐based peptide materials, it still remains a challenge to delineate the theoretical insight into peptide nanostructure formation and the structural features that could permit materials with enhanced properties to be engineered. Herein, we report the synthesis of a novel peptide building block composed of six phenylalanine residues and eight PEG units, PEG8‐F6. This aromatic peptide self‐assembles in water in stable and well‐ordered nanostructures with optoelectronic properties. A variety of techniques, such as fluorescence, FTIR, CD, DLS, SEM, SAXS, and WAXS allowed us to correlate the photoluminescence properties of the self‐assembled nanostructures with the structural organization of the peptide building block at the micro‐ and nanoscale. Finally, a model of hexaphenylalanine in aqueous solution by molecular dynamics simulations is presented to suggest structural and energetic factors controlling the formation of nanostructures.  相似文献   
2.
3.
4.
Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the ‘open’ conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.  相似文献   
5.
6.
7.
Plant-derived compounds are emerging as an alternative choice to synthetic fungicides. Chloroform–methanol extract, obtained from the bark of Zanthoxylum rhoifolium, a member of Rutaceae, showed a fungistatic effect on Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata, Colletotrichum gloeosporioides and Clonostachys rosea, when added to the growth medium at different concentrations. A fraction obtained by gel separation and containing the alkaloid O-Methylcapaurine showed significant fungistatic effect against B. cinerea and S. sclerotiorum, two of the most destructive phytopathogenic fungi. The underlying mechanism of such an inhibition was further investigated in B. cinerea, a fungus highly prone to develop fungicide resistance, by analysing the expression levels of a set of genes (BcatrB, P450, CYP51 and TOR). O-Methylcapaurine inhibited the expression of all the analysed genes. In particular, the expression of BcatrB gene, encoding a membrane drug transporter involved in the resistance to a wide range of xenobiotic compounds, was strongly inhibited (91%).  相似文献   
8.
The luminophore Ru(bpy)2(dcbpy)2+ (bpy=2,2’-bipyridine; dcbpy=4,4’-dicarboxy-2,2’-bipyridine) is covalently linked to a chitosan polymer; crosslinking by tripolyphosphate produced Ru-decorated chitosan fibers (NS-RuCh), with a 20 : 1 ratio between chitosan repeating units and RuII chromophores. The properties of the RuII compound are unperturbed by the chitosan structure, with NS-RuCh exhibiting the typical metal-to-ligand charge-transfer (MLCT) absorption and emission bands of RuII complexes. When crosslinks are made in the presence of IrO2 nanoparticles, such species are encapsulated within the nanofibers, thus generating the IrO2⊂NS-RuCh system, in which both RuII photosensitizers and IrO2 water oxidation catalysts are within the nanofiber structures. NS-RuCh and IrO2⊂NS-RuCh have been characterized by dynamic light scattering, scanning electronic microscopy, and energy-dispersive X-ray analysis, which indicated a 2 : 1 ratio between RuII chromophores and IrO2 species. Photochemical water oxidation has been investigated by using IrO2⊂NS-RuCh as the chromophore/catalyst assembly and persulfate anions as the sacrificial species: photochemical water oxidation yields O2 with a quantum yield (Φ) of 0.21, definitely higher than the Φ obtained with a similar solution containing separated Ru(bpy)32+ and IrO2 nanoparticles (0.05) or with respect to that obtained when using NS-RuCh and “free” IrO2 nanoparticles (0.10). A fast hole-scavenging process (rate constant, 7×104 s−1) involving the oxidized photosensitizer and the IrO2 catalyst within the IrO2⊂NS-RuCh system is behind the improved photochemical quantum yield of IrO2⊂NS-RuCh.  相似文献   
9.
Mixed fermentation using Starmerella bacillaris and Saccharomyces cerevisiae has gained attention in recent years due to their ability to modulate the qualitative parameters of enological interest, such as the color intensity and stability of wine. In this study, three of the most important red Apulian varieties were fermented through two pure inoculations of Saccharomyces cerevisiae strains or the sequential inoculation of Saccharomyces cerevisiae after 48 h from Starmerella bacillaris. The evolution of anthocyanin profiles and chromatic characteristics were determined in the produced wines at draining off and after 18 months of bottle aging in order to assess the impact of the different fermentation protocols on the potential color stabilization and shelf-life. The chemical composition analysis showed titratable acidity and ethanol content exhibiting marked differences among wines after fermentation and aging. The 48 h inoculation delay produced wines with higher values of color intensity and color stability. This was ascribed to the increased presence of compounds, such as stable A-type vitisins and reddish/violet ethylidene-bridge flavonol-anthocyanin adducts, in the mixed fermentation. Our results proved that the sequential fermentation of Starmerella bacillaris and Saccharomyces cerevisiae could enhance the chromatic profile as well as the stability of the red wines, thus improving their organoleptic quality.  相似文献   
10.
Chromatographia - The application of temperature gradient interaction chromatography (TGIC) as an advanced technique for the characterisation of polymers is discussed, in comparison to other liquid...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号