首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   52篇
  国内免费   2篇
化学   1039篇
晶体学   11篇
力学   3篇
数学   101篇
物理学   123篇
  2023年   11篇
  2022年   12篇
  2021年   99篇
  2020年   37篇
  2019年   34篇
  2018年   31篇
  2017年   30篇
  2016年   66篇
  2015年   43篇
  2014年   63篇
  2013年   111篇
  2012年   120篇
  2011年   108篇
  2010年   83篇
  2009年   58篇
  2008年   72篇
  2007年   56篇
  2006年   70篇
  2005年   65篇
  2004年   29篇
  2003年   29篇
  2002年   19篇
  2001年   9篇
  2000年   7篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1277条查询结果,搜索用时 32 毫秒
1.
Journal of Thermal Analysis and Calorimetry - The results of studies of physiological fluids by differential scanning calorimetry (DSC) for the purpose of diagnosis and monitoring of diseases are...  相似文献   
2.
The present paper is a continuation of comprehensive study regarding to synthesis and properties of pyrazoles and their derivatives. In its framework an experimental and theoretical studies of thermal decomposition of the 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline were performed. It was found, that the decompositions of the mentioned pyrazoline system in the solution and at the melted state proceed via completely different molecular mechanisms. These mechanisms have been explained in the framework of the Molecular Electron Density Theory (MEDT) with the computational level of B3LYP/6-31G(d). A Bonding Evolution Theory (BET) examination of dehydrochlorination of the 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline permits elucidation of the molecular mechanism. It was found, that on the contrary for most known HCl extrusion processes in solution, this reaction is realised via single-step mechanism.  相似文献   
3.
Amorphous silicon oxycarbide (a-SiOC:H) films produced by remote plasma RPCVD from diethoxymethylsilane (DEMS) were characterized in terms of their basic properties related to the coatings deposited using conventional plasma enhanced PECVD method. The effect of substrate temperature (TS) on the growth rate, chemical composition, structure, and properties of resulting a-SiOC:H films is reported. Film growth is an adsorption-controlled process, wherein two mechanisms can be distinguished with a transition at about TS=70°C. Depending on the temperature, films of different nature can be obtained, from polymer-like to highly crosslinked material with C-Si-O network. The chemical structure of a-SiOC:H films was characterized by FTIR, 13C and 29Si solid-state NMR, and X-ray photoelectron spectroscopes. The a-SiOC:H films were also characterized in terms of their density, refractive index, surface morphology, conformality of coverage, hardness, adhesion to a substrate, and friction coefficient. The films were found to be morphologically homogeneous materials exhibiting good conformality of coverage and small surface roughness. Their refractive index exhibits anomalous effect revealing a minimum value at TS=125°C. Due to their exceptional physical properties a-SiOC:H films produced by RPCVD from DEMS precursor seems to be useful as potential dielectric materials or coatings for various encapsulation applications.  相似文献   
4.
A search for new drugs that overcome the multidrug resistance of microorganisms or are effective against cancer cells prompted us to investigate the binary and ternary Cu(II) complexes containing L-arginine, [CuCl(L-Arg)(phen)]Cl·2H2O (phen = 1,10-phenanthroline) ( 1 ) and [Cu(L-Arg)2(H2O)]C2O4·6H2O ( 2 ), for which crystal and molecular structures were characterized previously. In order to discuss the biological function, the complexes have been screened for their antitumor activity against A549 (human lung cancer cells), HepG2 (human liver hepatocellular carcinoma cells) and antimicrobial activity. To identify the complexes forms existing in the solutions of 1 and 2 crystals, the results obtained from EPR, NIR–Vis–UV and MS (mass spectrometry) measurements were correlated with those from analysis of potentiometric titration of Cu(II)―L-Arg and Cu(II)―L-Arg―phen systems. This comprehensive study indicated that the [Cu(L-Arg)(phen)]2+ and [Cu(L-Arg)2]2+ species are dominant in the solution. Complexes 1 and 2 were found to present specific ligand-dependent cytotoxic and antiproliferative potential against cancer cells. They also show antibacterial activity against Gram-positive and Gram-negative bacteria as well as display antifungal properties.  相似文献   
5.
In organic photovoltaics, porphyrins (PPs) are among the most promising compounds owing to their large absorption cross-section, wide spectral range, and stability. Nevertheless, a precise adjustment of absorption band positions to reach a full coverage of the so-called green gap has not been achieved yet. We demonstrate that a tuning of the PP Q- and Soret bands can be carried out by using a computational approach for which substitution patterns are optimized in silico. The most promising candidate structures were then synthesized. The experimental UV/Vis data for the solvated compounds were in excellent agreement with the theoretical predictions. By attaching further functionalities, which allow the use of PP chromophores as linkers for the assembly of metal-organic frameworks (MOFs), we were able to exploit packing effects resulting in pronounced redshifts, which allowed further optimization of the photophysical properties of PP assemblies. Finally, we use a layer-by-layer method to assemble the PP linkers into surface-mounted MOFs (SURMOFs), thus obtaining high optical quality, homogeneous and crystalline multilayer films. Experimental results are in full accord with the calculations, demonstrating the huge potential of computational screening methods in tailoring MOF and SURMOF photophysical properties.  相似文献   
6.
The skin is constantly exposed to external and internal factors that disturb its function. In this work, two nanosystems-levan nanoparticles and a surfactin-stabilized nanoemulsion were preserved (tested for microbial growth) and characterized (size, polydispersity, Zeta potential, and stability). The nanosystems were introduced in the model formulations-cream, tonic, and gel, and confirmed by TEM. The analysis showed that nanoemulsion has a spherical morphology and size 220–300 nm, while levan nanoparticles had irregular shapes independently of the use of matrix and with particle size (130–260 nm). Additionally, we examined the antiradical effect of levan nanoparticles and nanoemulsion in the prototype of formulations by scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl; EPR spectroscopy). The model cream with both nanosystems and the whole range of products with nanosystems were evaluated in vivo for hydration, elasticity, smoothness, wrinkles and vascular lesions, discoloration, respectively. The cream improved skin condition in all tested parameters in at least 50% of volunteers. The use of more comprehensive care, additionally consisting of a tonic and gel, reduced the previously existing skin discoloration to 10.42 ± 0.58%. The presented prototype formulations are promising in improving skin conditions.  相似文献   
7.
8.
9.
Using one-step method, rigid polyurethane foams were made, modified with developed fire retardant systems containing halogen-free flame retardants and nanofillers in the form of multi-walled carbon nanotubes or nanoscale titanium dioxide. The materials were subjected to a test using a cone calorimeter and smoke-generating chamber, and selected samples were further analyzed via thermogravimetry and oxygen index. Moreover, the products of thermal degradation of selected samples were identified using gas chromatography with mass spectrometer. Conducted flammability tests confirmed the presence of a synergistic effect between the used nanofillers and halogen-free flame retardants. It has been observed that the carbonized layer, the formation of which favored the presence of nanoadditives, inhibits the combustion process. Furthermore, nanofillers influenced favorably reduction in the amount and the number of occurring products of thermal degradation.  相似文献   
10.
Electrode materials consisted of tin nanograins encapsulated in different origin carbon buffer matrix (starch or water soluble polymer) were obtained in a simple and inexpensive process. The tin precursor was synthesized using modified reverse nanoemulsion technique (w/o) and then coated by a source of carbon. The composites precursors were pyrolysed, affording formation of C/Sn anode materials. The resulting samples were investigated by powder X-ray diffraction studies in order to verify the structure and calculate crystallites sizes. The morphology of the nanocomposites was characterized by low-temperature nitrogen adsorption method (N2-BET). Thermal analysis measurements (EGA-TG/DTG/DTA and DSC) allowed determining optimal conditions of preparation process and estimating carbon content in the obtained anode materials. Thermogravimetric studies also proved to be highly useful in establishing the leak behaviour of C/Sn nanocomposites. The electrochemical performance of the nanopowders was examined by charge–discharge tests in R2032-type coin cell. The thermal analysis results as well as low-temperature nitrogen adsorption data indicated that the origin of carbon precursor has major impact on morphology and leak behaviour of the obtained carbon buffer matrix. The electrochemical tests showed that better tightness of carbon–tin nanocomposites resulted in higher gravimetric capacity and better cell performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号